首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of site symmetric distortion induced by the phase transition on up-conversion emission and thermal sensing performance of Gd2(MoO4)3:Yb3+/Er3+ (GMO) crystals were elaborately studied by minimizing interference from many factors. Monoclinic GMO showed a much stronger fluorescence intensity and larger fluorescence intensity ratio under the irradiation of 980 nm laser in comparison to the orthorhombic counterpart. These remarkable up-conversion properties stemmed from the low site symmetry with large site symmetric distortion in monoclinic GMO. Moreover, the thermal sensing property of the samples was assessed based on the fluorescence intensity ratio technique, where monoclinic GMO exhibited much higher maximum absolute sensitivity (Sa = 0.0257 K−1 at 510 K) due to the site symmetric distortion, which was further explained by the Judd–Ofelt theory and polarizability of the chemical bond volume model. Results opened an efficient avenue for achieving highly sensitive thermometry in many daily scenarios via finely tailoring the local site symmetry.  相似文献   

2.
Here, Bi3+, Er3+ co-activated gadolinium phosphors with multimode emission properties are prepared, which can emits blue, green, and orange light under the excitation of ultraviolet, 980 and 1550 nm, respectively. Moreover, BaGd2O4:Bi3+, Er3+ can show multicolor luminescence under different excitation conditions, such as pump light source, ambient temperature, working current, and other factors. Based on the dynamic luminescence characteristics, the dynamic anti-counterfeiting experiments are designed based on the phosphor. At the same time, the material also shows multimode temperature sensing characteristics. Under the excitation of 980 nm laser, three strong up-conversion signals Er3+ ions are generated at 528 nm (2H11/2), 555 nm (4S3/2), and 668 nm (4F9/2), which have different temperature dependences. Based on the fluorescence intensity ratio between thermal-coupled energy levels (2H11/2/4S3/2) and nonthermal-coupled energy levels (2H11/2/4F9/2) of Er3+ ions, respectively, the dual-mode temperature thermometer was constructed with high-temperature sensitivity. In addition, the fluorescence lifetime of Bi3+ ions also has a strong temperature dependence, which can be used as another temperature detection signal, greatly improving the stability of thermometers under harsh conditions. Therefore, the material has a bright prospect in the field of anti-counterfeiting and temperature sensing.  相似文献   

3.
Near-infrared (NIR) luminescence of Pr3+ and Tm3+ ions in titanate-germanate glasses has been studied for laser and fiber amplifier applications. The effect of the molar ratio GeO2:TiO2 (from 5:1 to 1:5) on spectroscopic properties of glass systems was studied by absorption, luminescence measurements, and theoretical calculations using the Judd–Ofelt theory. It was found that independent of the TiO2 concentration, intense NIR emissions at 1.5 and 1.8 μm were observed for glasses doped with Pr3+ and Tm3+ ions, respectively. Moreover, several spectroscopic and NIR laser parameters for Pr3+ and Tm3+ ions, such as emission bandwidth, stimulated emission cross-section, quantum efficiency, gain bandwidth, and figure of merit, were determined. The results were discussed in detail and compared to the different laser glasses. Systematic investigations indicate that Pr3+-doped system with GeO2:TiO2 = 2:1 and Tm3+-doped glass with GeO2:TiO2 = 1:2 present profit laser parameters and could be successfully applied to NIR lasers and broadband optical amplifiers.  相似文献   

4.
As an emerging transparent ceramic with extremely wide transmission range, the unique optical properties of ZnGa2O4 are of particular interest. In this work, ZnGa2O4 transparent ceramic with high optical quality was prepared by pressureless sintering and hot isostatic pressing. Its optical behavior was then comprehensively studied. The critical optical data, including refractive index, extinction coefficient, Abbé number, absorption coefficient in infrared region, and phonon frequency, were investigated. The indirect band gap and the phonon energy assisting indirect transition were determined as 4.10 and 0.17 eV, respectively. The modified Sellmeier equation and single-oscillator dispersion relation were derived to describe the optical dispersion. Benefitting from the weaker tetrahedral Zn–O bond and heavier cationic masses, the infrared transmission range of ZnGa2O4 transparent ceramic was broadened significantly. Oxygen vacancies were suggested to induce the absorption in lower photon energy region of ZnGa2O4 transparent ceramic, which may enrich its functionalization. This work is meaningful for gaining overall insight into optical properties of transparent materials.  相似文献   

5.
Nd3+ doped strontium fluorophosphate (S-FAP), with chemical formula Sr5(PO4)3F, nanopowders were prepared using the co-precipitation method. The prepared powders had no impurity phase with a grain size of about 30 nm and the doping limit of Nd3+ ions in strontium fluorophosphate is about 9 at.%. The morphology and particle size were determined by the doping concentration of Nd3+. Anisotropic Nd: S-FAP transparent ceramics with different Nd3+ doping concentrations were fabricated successfully by the simple hot-pressing method. The grain size of prepared S-FAP transparent ceramics decreased first and then increased with the increase of Nd3+ concentration. The 2 at.% Nd: S-FAP ceramic presented the highest optical transmittance at all wavelengths range. The characteristic transitions from the ground state to the excited states of Nd3+ ions were observed from the absorption spectra, and the absorption cross-section was calculated at 3.71 × 10–20 cm2. The influence of Nd3+ ion concentration on luminescence intensity and fluorescence lifetime was studied under 796 nm excitation. The strong emission of 4F3/24I9/2 transition in Nd: S-FAP was calculated by Judd–Ofelt (J-O) theory.  相似文献   

6.
Oxyfluoride transparent glass-ceramics (GC) containing CaF2 and ZnAl2O4 nanocrystals have been fabricated with melt-quenching method. By carrying out the heat treatment of the precursor glass (PG), Er3+ and Cr3+ were selectively partitioned into CaF2 and ZnAl2O4 nanocrystals, respectively. The obtained multi-phase GC exhibited strong upconversion (UC) fluorescence of Er3+ as well as intense down-conversion (DC) fluorescence of Cr3+. Under 980 nm excitation, the green UC fluorescence of Er3+ due to 2H11/2,4S3/24I15/2 transition and the red DC fluorescence lifetime of Cr3+ due to 2E, 4T24A2 transition were found to be highly dependent on the temperature and makes them possibly suitable for Optical Thermometry. With least-square fitting methods, the FIR of Er3+ from thermally coupled energy states (2H11/2 and 4S3/2) produced maximum temperature sensing sensitivity values of 0.33% K−1 at 437 K and 0.36% K−1 at 267 K, respectively. Similarly, fluorescence lifetime of Cr3+ attributed to the parity forbidden (2E → 4A2) and spin allowed (4T24A2) produced the maximum temperature sensor sensitivity value equal to 0.67% K−1 at 535 K.  相似文献   

7.
The long persistent luminescence (PersL) and color adjustable properties in high-temperature environment are of great significance for luminescent materials in the fields of multiple anti-counterfeiting, biological imaging, and optical temperature sensing (OTS). In this work, a series of self-activated CaNb2O6 (CNO): Tb3+ phosphors have been successfully synthesized by solid-state reaction route, the OTS, and temperature-dependent PersL of these phosphors is carried out and investigated in detail. Relying on the energy transfer from host to the activator Tb3+ ion, the visual color-tunable emissions from blue to green were detected with the increase of temperature and the maximum absolute and relative sensitivities reach 0.955% K-1 and 1.243% K-1. Moreover, the temperature-dependent PersL characteristics were investigated systematically, and the initial brightness and the lasting time all reach a maximum value at 323 K in the representative CNO: 1%Tb3+ sample. All the results show that the high-temperature persistent phosphor has potential applications in OTS and anti-counterfeiting field.  相似文献   

8.
We proposed a new strategy for utilizing rare-earth–free-activated self-referencing optical material with dual activators for temperature sensing, which was synthesized by conventional high-temperature solid-state method and was scarcely reported. Originating from the different thermal responses of Mn4+ and Bi3+ ions, a Mn4+/Bi3+-based dual-emitting fluorescence intensity ratio (FIR) as dual-modal temperature signal for temperature sensing has been corroborated as a promising temperature sensing method. Due to the outstanding thermal resistance of activator Mn4+ (anti-Stokes) benefiting from the unique 3dn electronic configurations and strong field strength of host, together with the energy transfer from Bi3+ to Mn4+ ions and excellent thermal quenching of Bi3+, this temperature-sensitive phosphor displayed both an extensive detection temperature region ranging from 303 to 563 K and excellent absolute and relative sensitivity of 0.0147 K−1 and 1.21% K−1 respectively, both of which are higher than some foregoing reported optical materials. Furthermore, two well-separated emission peaks at blue and red regions enabled an excellent signal discriminability and accurate temperature detection under the single-wavelength excitation of 340 nm. In addition, freedom from rare-earth ions contributed its possibility to be mass-produced for meeting the needs of economic rationality, nontoxic and convenient synthesis. It is anticipated that this preliminary study would arouse peoples’ attention on exploring more novel dual activator-based optical thermometric materials in absence of rare-earth ions.  相似文献   

9.
For the development of optical temperature sensor, a series of GdTaO4 phosphors with various Er3+-doping concentrations (0, 1, 5, 10, 25, 35, 50 mol%) were synthesized by a solid-state reaction method. The monoclinic crystalline structure of the prepared samples was determined by X-ray diffraction (XRD). Under excitations of 980 and 1550 nm lasers, the multi-photon-excited green and red upconversion (UC) luminescence emissions of Er3+ were studied, and the critical quenching concentration of Er3+-doped GdTaO4 phosphor was derived to be 25 mol%. By changing the pump power of laser, it was found that the two-photon and three-photon population processes happened for the UC emissions of Er3+-doped GdTaO4 phosphors excited by 980 and 1550 nm lasers, respectively. Furthermore, based on the change of thermo-responsive green UC luminescence intensity corresponding to the 2H11/2 → 4I15/2 and 4S3/2 → 4I15/2 transitions of Er3+ with temperature, the optical temperature sensing properties of Er3+-doped GdTaO4 phosphor were investigated under excitations of 980 and 1550 nm lasers by using the fluorescence intensity ratio (FIR) technique. It was obtained that the maximum absolute sensitivity (SA) and relative sensitivity (SR) of Er3+-doped GdTaO4 phosphors are as high as 0.0041 K−1 at 475 K and 0.0112 K−1 at 293 K, respectively. These significant results suggest that the Er3+-doped GdTaO4 phosphors are a promising candidate for optical temperature sensor.  相似文献   

10.
《Ceramics International》2022,48(2):2230-2240
A series of BaBi2-xNb2ErxO9 ceramic compositions with different Er3+ concentration (x = 0.0–8 mol %) is synthesized by a conventional solid-state reaction method. The upconversion (UC) light emission under 980 nm excitation with different pump powers and luminescence-based temperature sensing ability of BaBi2-xNb2ErxO9 composition have been examined. The formation of a Bi-layered perovskite phase of BaBi2Nb2O9 is confirmed having an orthorhombic geometry and Fmmm space group. Shifts in the Raman modes indicate reduced interaction of Bi3+ ions with NbO6 octahedron leading to relaxation of structural distortion with increasing Er3+ content. The maximum value for remnant polarization and coercive field of doped BaBi2-xNb2ErxO9 ceramic for (x = 0.08) Erbium concentration comes out to be 2.9524 μC/cm2 and 49.8980 kV/cm. For an optimum content of x = 0.04, two strong UC green emission bands were observed at 549 nm via 4S3/2 → 4I15/2 transition and 527 nm via 2H11/2 → 4I15/2 transitions, and a weak red emission appears at 657 nm attributed to the 4F9/2 → 4I15/2 transition. Pump power dependence suggests that UC emission is a two-photon mechanism for red and green emission bands. Temperature sensing evaluated by the change in the fluorescence intensity ratio (I527/I549) indicates the highest sensitivity to be 0.00996 K?1 at 483 K for an optimum concentration of Er3+ at x = 0.04 in BaBi2-xNb2ErxO9 composition and is useful for non-contact optical thermometry.  相似文献   

11.
Uniform spindle-like micro-rods NaLa(WO4)2:Yb3+,Er3+ phosphors are prepared by the solvothermal method in the text. Controllable morphology of NaLa(WO4)2 crystal can be obtained by adjusting the prepared temperature, PH value, complexing agent content, and solvent ratio. Uniform NaLa(WO4)2:Yb3+,Er3+ micro-rods of 1.8 μm in length and 0.5 μm in width are synthesized at a low temperature of 120°C. The prepared NaLa(WO4)2:Yb3+,Er3+ phosphors present green upconversion luminescence under 980 nm excitation, luminescence intensity reaches to maximum at the Yb3+ and Er3+ concentration of 6 and 2 mol%. The temperature performance of the NaLa(WO4)2:Yb3+,Er3+ phosphors are evaluated based on thermal coupling technology. Temperature dependence of the two green emissions ratio of Er3+ ion is obtained, and the sensitivity of the sample can be calculated, the maximum sensitivity of NaLa(WO4)2:Yb3+,Er3+ is up to 0.019 K−1 at the sample temperature of 564 K.  相似文献   

12.
《Ceramics International》2021,47(21):30221-30233
A series of BaGd2O4:Bi3+,Eu3+ phosphors with dual-emitting centers were prepared by high-temperature solid-state method. X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), fluorescence spectroscopy, lifetime decay curve and variable temperature emission spectroscopy were used to systematically study the structure, luminescence performance and temperature characteristics. Under ultraviolet (UV) excitation, the BaGd2O4:Bi3+,Eu3+ phosphor showed a broad-band emission in the blue region corresponding to transitions of Bi3+ ions and the sharp red light emission corresponding to Eu3+ ions. The Bi3+ and Eu3+ ion emission peaks were well-separated, which meets a prerequisite for efficient temperature signal resolution measurement. The fluorescence intensity ratio (FIR) technique was used to measure the different temperature response characteristics between Bi3+ blue emission and Eu3+ red emission. When the temperature varies from 293 K to 473 K, the relative temperature sensitivity (Sr) of BaGd2O4:Bi3+,Eu3+ phosphors is obtained, was determined as 1.0182%K−1. In addition to calculating the relative sensitivity by FIR technology, we can also obtain the value of Sr through experiments and formulas related to the decay life, and found to be 1.0651%K−1. Therefore, BaGd2O4: Bi3+,Eu3+ phosphor is an excellent non-contact optical temperature measurement material.  相似文献   

13.
《Ceramics International》2022,48(10):13615-13625
The present work has been planned with the primary objective to study the effect of Li+ doping on photoluminescence (PL) emission intensity and temperature sensing performance of Y2Zr2O7(YZO): Er3+ phosphors. The hydrothermal method was employed to synthesize the YZO: 4Er3+, xLi+ (x = 0, 3, 5, 10 mol%) phosphors. The formation of the phase and the crystallinity of the prepared samples were examined from the XRD results. The cell parameters were estimated from Rietveld refinement. The surface morphology and elemental analysis were studied using the FESEM and EDX techniques. UV–Vis–NIR diffuse reflectance spectroscopy was utilized to find the optical band gap of the prepared samples. The Li+ doped sample exhibits better optical absorption than the sample without Li+ ions. The FTIR spectroscopy confirms the presence of the desired functional groups within the samples. XPS measurements were performed to find the bonding state of the compositions. Photoluminescence down-conversion and up-conversion measurements were carried out under 378 nm and 976 nm excitation, respectively. The optical thermometry of the prepared phosphors was investigated within the temperature range 303K–630K. The reported phosphor shows a significant amount of intensity enhancement after Li+ doping in both the down conversion and up conversion processes. In general, the charge compensation effect is used to explain this type of result. As the phosphor is already charge balanced, the phenomenon mentioned above cannot be considered. We have explained the various contributing factors responsible for the changes in intensity and correlated them with the different experimental results collected by characterizing the prepared samples. Overall, the obtained results suggest that the reported phosphor may act as multifunctional material.  相似文献   

14.
《Ceramics International》2016,42(13):14710-14715
Usually, Er3+ doping concentration effect on the temperature sensing properties of Er3+ containing materials is ignored. In this work, we demonstrated the influence of Er3+ concentration and excitation path on the spectral and temperature sensing properties in Er3+, Yb3+ co-doped NaGdTiO4 system. The NaGdTiO4: Er3+/Yb3+ phosphors were prepared by a high temperature solid state reaction method. Different spectral patterns for down- and up-conversion processes were observed and ascribed to the different excitation and population routes. The concentration quenching behaviors for down- and up-conversion processes were explained via cross relaxations between Er3+ ions. Most importantly, the Er3+ concentration dependent optical temperature sensing performance was observed and experimentally explained as a fact that the optical transition rate of Er3+ in different samples was changed with various Er3+ doping concentration.  相似文献   

15.
The doping of transition metal ions in the up-conversion (UC) luminescent material doped with Yb3+/Ln3+ is a facile way to increase their UC luminescence intensities and alter their colors. In this study, La2MgTiO6:Yb3+/Mn4+/Ln3+ (Ln3+ = Er3+, Ho3+, and Tm3+) phosphors showing excellent luminescence properties were prepared by a solid-state method. The sensitivity of the La2MgTiO6:Yb3+/Ln3+/Mn4+ phosphor was double that without Mn4+, because Mn4+ affects the UC emissions of Ln3+ via energy transfer between these ions. Moreover, Mn4+ also acts as a down-conversion activator, which can combine with UC ions to achieve multi-mode luminescence at different wavelengths. Under 980 nm excitation, these samples emit green light (from Er3+ and Ho3+) and blue light (from Tm3+). In contrast, under 365 nm excitation, they emit red light (from Mn4+). Further testing revealed that the La2MgTiO6:Yb3+/Mn4+/Ln3+ phosphors have potential applications in temperature sensing and anti-counterfeiting.  相似文献   

16.
《Ceramics International》2023,49(16):26226-26245
Highly crystalline and single phase BaGd2xDyxO4 (0.00 x 0.16) phosphors, with an average crystallite size around 126 nm, have been synthesised using solid-state reaction technique. The structural and optical properties of these phosphors have been studied in detail to establish an unambiguous correlation between these properties. High-angle annular dark field (HAADF) images have confirmed that the constituent elements are homogeneously distributed in the particles, and their elemental composition has been established using X-ray photoelectron spectroscopy (XPS). The tuning of optical band gap with x has been achieved, which is a rare achievement in these phosphors. Also, the optimum concentration of Dy3+ ions has been found to be 0.8 mol%, which is the lowest among the Dy3+ doped BaGd2O4 phosphors reported so far. This concentration quenching effect has been discussed on the basis of a combination of decay curve analysis, calculation of average critical distance between the Dy3+ ions and integrated intensities of photoluminescence (PL) emission bands. The average crystallite size and optical band gap has also been found to decrease after x = 0.016, from which their correlation with concentration quenching effect has been investigated. The asymmetry ratio between the integrated intensities of yellow and blue PL emission bands has been observed to be greater than 2 throughout x, which confirmed the preferential lattice site for Dy3+ ions in these phosphors with present synthesis conditions. The variation of asymmetry ratio and Gd3+-dominated IR-active lattice vibrations with x, and Vegard’s law pertaining to the volume of a unit cell confirms that the local bonding environment in the lattice of these phosphors gets modified at x = 0.016. The photometric parameters for these phosphors reveal their suitability for fabrication of warm light orange LEDs on appropriate UV chips.  相似文献   

17.
In recent years, rare earth ions doped optical materials have been extensively utilized in anticounterfeiting, temperature measurement, and other fields. However, it is difficult for single-mode photoluminescence to meet the increasingly complex anticounterfeiting needs in practice. In this article, Yb3+/Er3+ codoped Y2WO6 multifunctional microparticles have been designed and prepared, which can emit multimode luminescence and are used for anticounterfeiting and temperature measurement. Under excitation at 254, 365, and 980 nm, Y2WO6:Yb3+/Er3+ microparticles can emit blue, green, and yellow-green luminescence, respectively. The multicolor emission is helpful to improve the security of anticounterfeiting in multimode. In addition, the upconversion, downconversion luminescence, and downconversion lifetime attenuation of this material can be used for fast responsive and noncontact temperature measurement. Among the three temperature measurement methods, the material has the highest sensitivity under the downconversion temperature measurement method, which is 1.25 × 10–2 K–1 (at 303 K). The results suggest that the Y2WO6:Yb3+/Er3+ microparticles have excellent applications in the domain of multimode anticounterfeiting and temperature measurement.  相似文献   

18.
《Ceramics International》2022,48(11):15755-15761
In this work we detail the preparation of new luminescent Li+ and K+ doped Na2Zn3Si2O8: Er3+ up-conversion phosphors using the high-temperature solid-phase method. We investigate the phosphors phase structure, elemental distribution, up-conversion luminescence characteristics and temperature sensing properties. Our fabricated samples were found to be homogeneous and when excited using 980 nm light, they emitted wavelengths in the green and red visible wavelength bands, which correspond to two major emission bands of Er3+. Doping with Li+ and K+ increased the luminescence intensity of the Na2Zn3Si2O8: Er3+ phosphor at 661 nm by 36 and 21 times respectively. The highest relative temperature sensitivity (Sa) of the fabricated phosphor reached a value of 19.69% K?1 and the highest absolute temperature sensitivity (Sr) reached 1.20% K?1. These values are superior to other materials which utilize up-conversion by Er3+ ions as a tool for temperature sensing. We anticipate that these new phosphors will find significant application as components in optical temperature measurement systems.  相似文献   

19.
At present, most blue-red composite LED light sources are widely used in the field of plant lighting. However, their full-width at half-maximum of blue light is too small to meet the requirements of plants for photosynthesis. Herein, a dual-emitting single-phase self-luminescent phosphor CaEuAl3O7 (CEAO) is reported in this study, which provides broadband blue emission of Eu2+ ions and red emissions of Eu3+ ions. According to the optical properties of Eu2+ and Eu3+ ions in the CEAO phosphor, it can be found that all emissions are consistent with the absorption of chlorophylls and pigment carotenoids. In addition, the temperature sensing based on the fluorescence intensity ratio (FIR) in the CEAO phosphor is also studied and the maximum sensitivity (S) can reach as high as 6.90% K−1 at 313 K. The results indicate that the single-component phosphor CEAO with blue and red double-color emission possesses an outstanding potential in plant growth lamps and optical thermometry applications.  相似文献   

20.
《Ceramics International》2017,43(14):10948-10954
Up-conversion phosphor is a potential candidate as non-contact temperature sensor because of its unjammable and unique detection abilities. In this work, we investigate the influence of Yb3+ concentration on the emission color, thermal sensing and optical heater behavior of Er3+ doped Y6O5F8 phosphor. Our results show that the emission color of Er3+ and Yb3+ co-doped Y6O5F8 powder changes from green to yellow with the Yb3+ concentration increasing. Importantly, the temperature sensing sensitivities of Er3+ and Yb3+ co-doped Y6O5F8 powder reach 0.008, 0.009, 0.010 and 0.011 K−1 as the sample doped with 2%, 5%, 8% and 11% Yb3+ at 476 K, respectively. Moreover, the temperature of high Yb3+ concentration sample shows preferable optical heating behavior, whose temperature is ascended by a large value of 94 K when the excitation pump power density changes from 1.0 to 13.1 W cm−2. These results suggest Er3+ and Yb3+ co-doped Y6O5F8 powder has great potential in colorful display, temperature sensing and optical heating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号