首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to evaluate the effects of microwave processing technology (MPT, 240–800 W, 1 and 4 min) on the functional and structural properties of fish gelatin (FG). It showed that MPT could increase gel strength and texture properties of FG, especially for 240 W. MPT greatly increased emulsifying activity index (EAI) of FG, but decreased its emulsion stability index (ESI). Rheology results showed that MPT increased viscosity of FG, but decreased gelation times. Intrinsic fluorescence and Fourier transform infrared (FTIR) spectroscopy results indicated that MPT could unfold gelatin, contributing to the formation of H-bonds. Scanning electron microscopy (SEM) analysis revealed that low power and short time of MPT-treated gelatin gels had much more dense and less voids. This work provided guidance for the applications of MPT to improve the functional properties of FG, and the results show that MPT-treated FG can replace mammalian gelatin and meet the religious requirement.  相似文献   

2.
Fish gelatin (FG) has similar functional properties to mammalian gelatin and is a potential mammalian gelatin substitute. However, its poor gelling properties limit its application in many fields. Early on, γ-polyglutamic acid (γ-PGA) was found to be effective in improving the gel properties of FG. Therefore, the gelling properties and structure of γ-PGA to FG under different pH levels were further studied in this article. When the pH of the system is 3, γ-PGA is positively charged; when the pH of the system is ≥5, γ-PGA is negatively charged, while FG is positively charged, so the change of the pH of the system affects the electrostatic binding ability of FG and γ-PGA. A γ-PGA concentration of 0.04% (w/v) and FG at pH 5 yielded the best gelling properties. Moreover, pH affected the formation of helices during gelatin gelation, and it had a significant effect on the nanostructure of FG. The relationship between structure and physicochemical properties was proposed as a schematic model.  相似文献   

3.
以罗非鱼鱼皮为原料制备鱼皮明胶,通过单轴压缩实验、差示扫描量热实验(DSC)和红外光谱法(FT-IR)探讨了不同氯化钠添加量(0、0.5%、1.0%、1.5%、2.0%、3.0%,w/v)对不同浓度鱼胶凝胶样品(2%、4%、6.67%,w/v)的真实应力、杨氏模量、热焓值和结构的影响。结果表明,随着鱼胶浓度增加其真实应力和杨氏模量显著增加,表明鱼胶的凝胶强度和硬度显著增加,添加氯化钠后,鱼胶体系的凝胶强度和硬度随氯化钠添加量的增加呈现显著下降趋势,当氯化钠添加量达到3%时,鱼胶凝胶强度和硬度的值最小。差式扫描量热量热分析结果表明,随着氯化钠浓度的增加,热焓值下降,鱼胶的凝胶网络交联程度变弱。傅里叶变换红外光谱分析结果表明,随着氯化钠添加量增加,酰胺Ⅰ带吸收峰逐渐向低波数方向移动,氢键形成受到抑制,鱼胶凝胶强度降降低。研究表明氯化钠的存在破坏了鱼胶凝胶样品的空间结构,降低了鱼胶的凝胶性能。  相似文献   

4.
Gelation properties of gellan/gelatin mixed solutions were studied using dynamic viscoelastic testing at eight different ratios of gellan (1.6–0.2% w/v) to gelatin (0–1.4% w/v) and seven different calcium levels (0–30 mM). The gelation temperature and gelation rate of the mixed gels were significantly affected by the ratio of gellan to gelatin as well as concentration of calcium. Addition of calcium at low levels resulted in an increase in gelation temperature and gelation rate compared to gels with no added calcium. Further increases in calcium increased the gelation temperature, but caused a decrease in gelation rate of the mixed gels. In addition, the presence of gelatin generally had a negative influence on gelation rate, especially at high proportions and when the solution had a high gelling temperature, probably by physically hindering the growth and development of gellan crosslinks. It appeared that in the presence of calcium, gellan formed the continuous gel matrix, with gelatin present as a discontinuous phase. Gellan/gelatin mixtures can form gels over a wide temperature range by varying the ratio of the two polymers as well as the calcium concentration.  相似文献   

5.
The gelling and structural properties of microbial transglutaminase (MTGase) and pectin modified fish gelatin were compared to investigate their performances on altering fish gelatin properties. Our results showed that within a certain concentration, both MTGase and pectin had positive effects on the gelation point, melting point, gel strength, textural, and swelling properties of fish gelatin. Particularly, low pectin content (0.5%, w/v) could give fish gelatin gels the highest values of gel strength, melting temperature, and hardness. Meantime, flow behavior results showed that both MTGase and pectin could increase fish gelatin viscosity without changing its fluid characteristic, but the latter gave fish gelatin higher viscosity. Both MTGase and pectin could increase the lightness of fish gelatin gels but decreases its transparency. More importantly, fluorescence and UV absorbance spectra, particle size distribution, and confocal microscopy results indicated that MTGase and pectin could change the structure of fish gelatin with the formation of large aggregates. Compared with MTGae modified fish gelatin, pectin could endow fish gelatin had similar gel strength, thermal and textural properties to pig skin gelatin.  相似文献   

6.
In the current study, the effect of air exposure to the gelatin solution on improvement of gel structure was investigated in terms of the steady and dynamic shear rheological properties. Prepared gelation solution (5% w/v) was covered to prevent air incorporation and it was subjected to 5 h gelatin and rheological analyses were carried out for the comparison of non-covered ones. It was observed that the preventing of air into the gelatin solution affected the rheological parameters. Apparent viscosity and complex viscosity values of samples increased during gelation and these values were measured to be tremendously high (1.894 and 8.346 Pa s, respectively) in non-covered gelatin solution while they were 0.474 and 1.611 Pa s in covered samples after 5 h gelation, respectively. Similarly, storage modulus (G′) of samples increased with the increase in gelation time and it was recorded to be 52.203 Pa in gelatin solution exposed to air while it was 9.848 Pa in gelatin solution covered to prevent air incorporation. These results showed importance of air in gelatin solution to the food industry using gelatin in food formulation for the structure of processed foods.  相似文献   

7.
The effects of vaious reagents on the rheological properties of heat-induced (90°C) gels formed from plasma protein solutions (pH 9.0) were studied. Both propylene glycol (5–20%, w/v) and ethanol (5–20,%, w/v), which enhance hydrogen and electrostatic interactions, increased gel compressive strength, whereas mercaptoethanol (25–100 mM) which reduces disulfides, and the sulfhydryl-blocking agent, p-hydroxymcrcuribenzoate (25–100 mM), reduced gel strength. High levels of guanidine hydrochloride (> 1M) or urea (> 2M), which weaken both hydrogen and hydrophobic interactions, decreased gel strength. On the basis of the results, we conclude that hydrophobic interactions and hydrogen and disulfide bonding are involved in the gelation of plasma proteins.  相似文献   

8.
We have investigated the influence of partial hydrolysis with an immobilized proteinase from Bacillus licheniformis on the thermal gelation of isolated beta-lactoglobulin B. Gelation behaviour was determined by dynamic rheological measurements (small deformation) and the gels were characterized with respect to microstructure and water-holding properties. A fine-stranded gel with a complex modulus of approximately 2000 Pa was formed from beta-lactoglobulin (50 g/l in 75 mM-Tris-HCl, pH 7.5). Limited hydrolysis prior to thermal gelation resulted in coarser gels with thicker protein strands and larger pores. Gel structure correlated with its permeability, proton mobility and water-holding capacity. Total stiffness gel increased with low degrees of hydrolysis, but decreased after prolonged hydrolysis. Maximal gel stiffness was 1.5-fold that gels made from of unhydrolysed beta-lactoglobulin. This was much lower than the stiffening effect obtained after partial hydrolysis of whey protein isolate, showing that the gel strengthening effect of partial hydrolysis was depedent on the protein composition and/or the hydrolysis and gelatin conditions. A mechanism to explain the observed effects of hydrolysis on gelation and gel properties is presented.  相似文献   

9.
ABSTRACT:  The objective of this work was to compare the physiochemical and rheological properties of Alaska pollock skin gelatin (AG) to those obtained for tilapia and pork skin gelatins. Results were also obtained for some mixed gels containing AG and pork skin gelatin, or AG and tilapia gelatin. AG contained about 7% hydroxyproline (Hyp), which was lower than that of tilapia (∼11%) or pork skin gelatin (∼13%). Most of the protein fractions in AG were α chain, β chain, and other oligomers. The gel strength of AG was 98 gram-force at 10 °C, and increased at a greater rate than other gelatins with decreasing temperature. The gel melting point of AG was the lowest with the oil-drop method, while the viscosity of AG was the highest of the samples studied. The rheological properties of gelatins were determined using small amplitude oscillatory shear testing. G' was nearly independent of frequency for most of the gelatin gels, but AG gels showed a slight dependence on G' and a minimum in G". G' was found to be a power law function of concentration for all gelatins used: G'= k × Cn. In rheological measurements, AG also showed the lowest gel melting temperature and sharpest melting region. Increasing gelatin concentration resulted in a higher melting temperature and a broader melting region for all gelatin gels. For both the AG-pork and AG-tilapia mixed gels, the gel melting temperatures decreased and melting regions narrowed as the AG fraction was increased.  相似文献   

10.
11.
Fish gelatin extraction from wastes of fish Herring species (Tenualosa ilisha) was carried out by a series of pretreatment with 0.2 M Ca(OH)2 followed by 0.1 M citric acid and final water extraction at 50 °C for 3 h. The resulting fish gelatin preparation was evaluated for its dynamic viscoelastic properties, gelling and melting temperatures and gel strength. The gelling and melting temperatures of gelatin samples (at 6.67%, w/v) were obtained from differential scanning calorimetry and rheological studies. The melting temperature of extracted fish gelatin (EFG) obtained ranged from 16.2 to 16.7 °C compared to that of commercial fish gelatin gel (CFG), from 23.7 to 25.6 °C and halal bovine gelatin (HBG), from 26.5 to 28.7 °C. On the other hand, gelling temperatures of EFG, CFG and HBG ranged from 5.1 to 5.2 °C, 11.9 to 17.46 °C, and 12.6 to 19.33 °C, respectively. EFG gave gels with a considerably lower G′ values than CFG and HBG. The bloom strength of EFG gels at 6.67% (w/v) was 69.03 g which was much lower than HBG (336.2 g) and CFG (435.9 g). Enzyme transglutaminase was added in the amounts of 0.5, 1.0, 3.0 and 5.0 mg/g gelatin to modify the gel properties of the extracted fish gelatin. The modified EFG gels obtained had higher gel strengths of 101.1 g and 90.56 g with added transglutaminase of 1.0 and 3.0 mg/g, respectively. However with addition of 5.0 mg/g enzyme the gel strength increased only up to 75.06 g. SDS-PAGE of extracted gelatin gel showed protein band intensities for α1-chains and 53 kDa but in gels added with higher concentration of transglutaminase, these protein band intensities seemed to disappear.  相似文献   

12.
Mixed cold-set whey protein isolate (WPI)–flaxseed gum (FG) gels, induced by the addition of CaCl2 or NaCl at fixed ionic strength (150 mM), were evaluated with respect to their mechanical properties, water-holding capacity (WHC) and SEM microscopy. They were prepared by mixing FG and thermally denatured (90 °C/30 min) WPI solutions at room temperature, but the gels were formed at 10 °C using two methods of salt incorporation: diffusion through dialysis membranes and direct addition. The mixed systems formed using dialysis membranes showed phase separation with the development of two (axial) layers, and the CaCl2-induced gels presented radial phase separation. In general the CaCl2-induced gels were less discontinuous, stronger, and showing lower WHC and deformability than the NaCl-induced gels. An increase in the FG concentration reduced the gel strength and WHC for both systems, which was associated with a prevailing phase separation between the biopolymers over the gelation process. Using direct salt addition, apparently none of the mixed gels showed macroscopic phase separation, but the NaCl-induced gels showed much higher hardness and elasticity than the CaCl2-induced gels. Since the gelation process occurred more quickly by direct salt addition, and more effectively for the divalent salts, the more fragile structure of the CaCl2-induced gels was a consequence of disruption of the cross-link interactions of the aggregates during the agitation used to homogenize the salt added.  相似文献   

13.
ABSTRACT: The effect of acidulant selection, heating temperature, and heating rate on the properties of low-pH β-lactoglobulin (β-Lg) gels and powders derived from these gels was investigated by rheological and microscopic techniques. As isothermal gelation temperature was increased from 75 to 85 °C, gels made with hydrochloric and lactic acid showed more rapid gel formation and increased stress at gel fracture. Thickening and water-holding properties of powders derived from these gels also increased with temperature. Increases in gel strength and derivatized powder functionality appeared to plateau above 85 °C. Gels and derivatized powders prepared with phosphoric acid exhibited attributes similar to samples prepared with HCl and lactic acid at lower temperatures. The ion-specific ability of phosphate to increase denaturation temperature was responsible for the shift in properties of gels made with phosphoric acid. Microscopy revealed temperature effects on network building block size, but variations in rheological properties could not be linked to changes in gel micrographs. Alteration of heating rates from 2.0 to 0.2 °C/min during gelation affected the observed gelation temperature, but had little effect on final gel mechanical properties. Acid selection and gelation temperature offer alternatives to control β-Lg gel strength and the functional properties of instant thickening protein ingredients.  相似文献   

14.
Thermal Gelation of Myofibrils from Pork, Beef, Fish, Chicken and Turkey   总被引:3,自引:0,他引:3  
Myofibril gels with 5, 7, or 10% protein and 2% NaCl were prepared from pork, beef, fish, chicken and turkey muscles using a heating rate of 0.7°C/min and pH 6.0 to compare the thermal gelation properties of myofibrillar protein from different species. The force required to rupture gel (Pf), force required to move plunger through gel (Fp), viscosity index (Ni), and elasticity (Ea) increased and cooking loss decreased with increasing protein contents. Myofibrils of chicken breast and thigh had lower and fish and turkey thigh had higher cooking loss at protein contents of 7% or 10%.  相似文献   

15.
《Journal of dairy science》2019,102(9):7849-7862
We investigated the effect of low concentrations (0.1 to 1%, wt/wt) of gelatin (types A and B) on the properties of acid milk gels in terms of rheology, tribology, texture, and water-holding capacity to better understand the role of gelatin in yogurt. The 2 types of gelatin showed similar effects on the properties of milk gels, with some minor differences, such as lubrication behavior at low concentrations. During acidification, gelatin at ≤0.4% caused an increase in the gel strength, and at higher concentrations it showed a negative effect. However, during cooling and annealing, we observed a positive effect on gel strength with 0.8 and 1% gelatin. Gelling and melting occurred at 0.8 and 1% concentrations of both types of gelatin. The addition of gelatin tended to decrease the storage modulus of milk gels and increase the apparent viscosity, pseudoplasticity, consistency, and yield stress. The firmness of the gels was decreased by gelatin at medium concentrations, but increased at high concentrations. Gelatin significantly enhanced the water-holding capacity of the gels; we observed no serum at concentrations ≥0.4%. With the addition of gelatin at concentrations ≥0.4%, the particle size of gels was greatly reduced, and their lubrication properties were significantly improved. This study showed that 0.4% was an effective concentration in acid milk gel; above this concentration, the properties of the milk gels were greatly changed. Tribology provided important information for understanding the role of gelatin in milk gels.  相似文献   

16.
The influence of mechanical shearing on the small deformation properties and microstructure of heat‐induced whey protein gel has been studied. The viscoelastic properties of these gels at different concentrations of 10% and 20% (w/w) exposed to different shear rates of 0, 50, 100, 200 and 500 s?1 during gelation were measured using dynamic oscillatory rheometry. The structure of both the shear treated and unsheared gels was then investigated using light microscopy. The results showed that the storage modulus of the gels at both concentrations was increased by increasing the shear rate exposure during gelation while the shear‐treated gels were more elastic and showed frequency‐independent behaviour. As the total protein concentration of the gel increased, the viscoelastic properties of the gels also increased significantly and the gels showed greater elasticity. The gels obtained from the higher shear rate exposure were stronger with higher elastic moduli at both protein concentrations. Images of the gels obtained using light microscopy showed that shearing resulted in phase separation and some aggregation in the structure of the gels at both concentrations. However, the shearing rates applied in this study were not enough to cause aggregation breakdown in the gel network.  相似文献   

17.
Studies were made on the effect of temperature, pH and protein and salt concentration on the penetration force withstood by globin gels. The registered force increased with heating temperature (60 - 95°C) and protein concentration (1.4 - 5.0%). The gelation pH was dependent on both protein and salt concentration; the higher the protein or salt concentration the lower the gelation pH. At 3% protein concentration globin formed a gel around pH 5 - 6. At 0.7% concentration and higher, the presence of salt weakened the gel strength, while the addition of plasma increased the gelation pH of salt-containing globin gels. A substantially higher penetration force was measured for bovine globin gels than porcine globin gels. Further concentration and spray-drying decreased the gel strength of globin gels.  相似文献   

18.
The aim of this work was to study the interaction between gelatin and casein glycomacropeptide (CMP) in the dynamic of gelation and the textural and microstructural properties of the mixed gels. Size particle, dynamic of gelation and textural and microstructural properties of CMP, gelatin and CMP-gelatin systems at pH 3.5 and pH 6.5 were determined. Size particle of gelatin increased by decreasing temperature from 35 °C to 5 °C, while no differences were observed in the size particle of CMP. At pH 6.5 the critical gelling concentration of gelatin was 1.5% and CMP did not gel, but the behavior of mixed systems was similar to gelatin. The more relevant result was observed at pH 3.5 since at concentrations in which CMP and gelatin did not gel on its own, the mixed systems gelled suggesting a synergistic effect.  相似文献   

19.
The effects of addition of polysaccharides with different ionic charge on rheology, microstructure, texture and water holding capacity (WHC) of acid milk gels were studied and compared to that of gelatin addition. Similar to gelatin, starch (neutral) and xanthan gum (anionic) did not prevent milk gelation in the first 30 min of the acidification stage, even at high concentrations, and the typical casein network in acid milk gels could still be seen from electron micrographs; gelling and melting of these hydrocolloids were observed during the cooling and heating stages at specific concentrations. On the other hand, two neutral polysaccharides, guar gum (≥ 0.05%) and locust bean gum [LBG] (≥ 0.1%) inhibited milk gelation from the beginning of the acidification stage; the microstructure of the gel was modified greatly and no gelling/melting was observed during the cooling or heating stages. Another anionic polysaccharide, carrageenan, induced earlier milk gelation at low concentration (≤ 0.05%), but inhibited gelation entirely at high concentration (0.2%); inflections at ~ 27 °C and 21 °C were also observed during the cooling and heating stages at 0.05% concentration. The gel microstructure was not changed greatly, but showed smaller particle size at a carrageenan concentration of 0.05% than control sample. None of the polysaccharides showed as much improvement in WHC of the milk gels as gelatin did. Hence, xanthan and starch were found to be closer to gelatin in their effect on acid milk gels compared to guar gum, LBG and carrageenan.  相似文献   

20.
The gelation properties of protein isolates extracted from tilapia muscle with acid and alkali-aided processing were compared to washed tilapia muscle. Gels were prepared with and without the addition of 2% NaCl (w/w) slightly above neutral pH and gelation properties and gel quality were determined using various procedures. Hardness and elasticity of gels as assessed by torsion testing was improved using 2% NaCl (w/w) compared to treatments without salt. Small strain oscillatory testing showed that storage modulus (G′) of gel pastes prior to thermal gelation was significantly higher in the absence of salt, while smaller differences were seen after thermal gelation. Small strain oscillatory tests demonstrated a different gel forming mechanism for acid and alkali treated proteins compared to washed muscle. Fold tests demonstrated that acid treated proteins and washed muscle had significantly lower gel quality compared to alkali treated proteins. Addition of salt in gels improved gel water-holding capacity for acid and alkali treated proteins. Overall, the acid treated proteins exhibited poorer gelling ability compared to alkali treated proteins. Total content of SH-groups was measured before and after gelation and S–S bonding did not explain the difference in gel forming ability of different treatments. The results indicate that the alkali-aided process can be used to produce high quality protein gels from tilapia muscle suitable for manufacturing of imitation seafood products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号