首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ceramics International》2017,43(6):4846-4851
In this paper, La-Ni substituted barium ferrite nanoparticles were prepared by a co-precipitation method. The morphology, structure, magnetic and microwave absorption properties of samples were accomplished by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscope (TEM), vibrating sample magnetometer (VSM) and vector network analysis. From the results evaluation, it can be seen that the magnetoplumbite structure for all of the samples have been formed and the average crystallite sizes of Ba1−xLaxFe12−xNixO19 nanoparticles within in the range of 50.9–65.5 nm. Ba0.9La0.1Fe11.9Ni0.1O19 exhibits a remarkable reflection loss of −13.5 dB at 13.05 GHz with a matching thickness of 1.5 mm. The reflection loss results indicate that Ba0.9La0.1Fe11.9Ni0.1O19 nanoparticles may be used as a potential for thin microwave absorbers.  相似文献   

2.
C/CoLaxFe2−xO4 (with x = 0.1, 0.2, 0.3) composites were compounded by using a high-temperature hydrolysis. X-ray Diffraction (XRD) and X-ray Photoelectron Spectroscopy (XPS) results show that doping of La ions does not alter the spinel crystal structure and partially replaces Fe ions. Results of Field-Emission Scanning Electron Microscope (FESEM) and Energy Dispersive Spectroscopy (EDS) mapping prove that with the doping of La ions, the grains are refined, and the carbon shell on the surface exists. The effect of doping of La ions on microwave absorption performance of the composites was systematically studied. It is found that an optimal reflection loss (RL) of −49.56 dB is achieved at 4.96 GHz, as the composition is C/CoLa0.2Fe1.8O4. Meanwhile, the sample C/CoLa0.3Fe1.7O4 shows excellent effective absorption bandwidth. Specifically, when the matching thicknesses are 4 and 5 mm, the effective absorption bandwidth is 4 GHz, covering the C band and Ku band, thus realizing multiband absorption. The synergistic effects of the enhanced dipole polarization related to the doping of La ions, improved interface polarization of the core-shell structure, and the magnetic loss originated from CoLaxFe2−xO4 are responsible for the optimal microwave absorption performance. Therefore, this C/CoLaxFe2−xO4 composite material has the prospect of a multiband high-efficiency microwave absorber.  相似文献   

3.
《Ceramics International》2020,46(9):13102-13106
The Ba1-xCaxFe11.4Co0.6O19 (x = 0.0, 0.2, 0.4, 0.6, and 0.8) composites with wide-bandwidth and good absorption performance were prepared. The MS of ceramics increases from about 62.4 to 83.4 emu g−1 as x rises from 0 to 0.6, which demonstrates that the desirable magnetic properties of such ceramics is obtained by adjusting the content of Ca2+. A bandwidth of reflection loss (RL) below - 5 dB can be obtained for frequencies from 5.9 to 18 GHz with the Ba0.4Ca0.6Fe11.4Co0.6O19 ceramic and a thickness of 2.0 mm, and a larger RL value of −34.1 dB is observed at 8.2 GHz for the Ba0.6Ca0.4Fe11.4Co0.6O19 ceramic. These results suggest the developed ceramics could act as effective and wide-bandwidth microwave absorbing materials to meet commercial and military applications.  相似文献   

4.
In this study, magnesium-zirconium–substituted M-type barium hexaferrites BaFe12-2xMg+xZrxO19 (BFMZO, 0.25 ≤ x ≤ 1.5) nanoparticles were successfully synthesized by sol-gel autocombustion technique. On one hand, the effects of Mg-Zr substitution concentration on the magnetic features of doped magnetic nanoparticles were investigated which showed that increasing the doping concentration causes the saturation magnetization to decrease. On the other hand, the influence of the different layer thicknesses (2, 3, and 4 mm) of BFMZO on the microwave absorption was investigated in X-band frequencies (8-12 GHz). Absorption results showed that increasing the film thickness from 2 to 3 mm causes microwave absorption to increase. Moreover, the morphological study reveals that aggregation percentage decreased when the substitution concentration increased. Therefore, size, magnetic, and absorption properties are tunable by substitution concentration.  相似文献   

5.
《Ceramics International》2015,41(8):9602-9609
Barium hexaferrite particles were synthesized with conventional solid state reaction route. 1% boron (B2O3) was added to the initial mixture of oxides to inhibit crystal growth at lower temperatures. Magnetic (Mn2+, Co2+, Ni2+and Cu2+), non-magnetic (Zn2+) and dielectric (Ti4+) ions were replaced by one Fe3+ ion of barium hexaferrite to shift the ferromagnetic resonance frequency to low frequencies and to increase the magnetic and dielectric losses. The structural and morphological characterization of samples was done by X-ray powder diffractometer and scanning electron microscopy. Magnetic and microwave properties were determined by vibrating sample magnetometer and vector network analyzer, respectively. The maximum saturation magnetization and the highest reflection losses of −34 dB at 10 GHz, with absoption bandwidth of 1.6 GHz at −20 dB, were observed in Cu2+–Ti4+ and Zn2+–Ti4+ substituted samples. The mechanism of microwave energy dissipation is due to the impedance matching at matching thickness. It was also observed that as the sample thickness increases, the resonance frequency decreases exponentially.  相似文献   

6.
xSrFe12O19/(1−x)NiFe2O4 composites (0 ≤ x ≤ 1.0) were synthesized by using a conventional solid-state synthetic route. The results show that magnetic hysteresis loops of the xSrFe12O19/(1−x)NiFe2O4 composites are similar to those of individual component ferrites, except for the 0.1SrFe12O19/0.9NiFe2O4 and 0.3SrFe12O19/0.7NiFe2O4, suggesting that the hard/soft magnetic phases are well exchange-coupled. The saturation magnetization, coercivity, and remanent magnetization of the xSrFe12O19/(1−x)NiFe2O4 composites are increased with increasing content of SrFe12O19, with maximal values of 42.1 Am2 kg−1, 78.7 kA m−1, 17.2 Am2 kg−1, respectively, as the content x is about 0.5. They are higher than those of the individual components, implying that interface coupling is present in the magnetic composites. The coercivity and remanent magnetization of the composites are increased initially with increasing sintering temperature and then show a downward tendency. For the component SrFe12O19 and NiFe2O4, the minimum reflection losses are −12.5 dB and −18.3 dB at match thicknesses of 2.5 mm and 2 mm, respectively. Compared with those of the component SrFe12O19 and NiFe2O4, the microwave absorption performances of the xSrFe12O19/(1−x)NiFe2O4 composites are improved remarkably, especially for the samples of x = 0.3 and x = 0.9. The minimum reflection losses values of the 0.3SrFe12O19/0.7NiFe2O4 composite are −31.6 dB (12.7 GHz) and −20.2 dB (13 GHz), while those of the 0.9SrFe12O19/0.1NiFe2O4 composites are −23.7 dB (16.3 GHz) and −33.5 dB (15.8 GHz), as the matching thicknesses are 2.5 mm and 2 mm, respectively. Therefore, the xSrFe12O19/(1−x)NiFe2O4 composites could be used as potential microwave absorption materials.  相似文献   

7.
We prepared Ba3−xYxCo2Fe24O41 (Y-Co2Z, x = 0, 0.2, and 0.4) by the solid-state reaction method. Y-Co2Z and polyaniline (PANI) composites (named as Y-P0, Y-P2, and Y-P4) were prepared by using the in-situ polymerization method. The Y-doping played an important role in the variation of lattice parameters, a and c. The combination of Y-doping and PANI modified the magnetic properties of the composites, which could be observed by the changing of the saturation magnetization and coercivity. This combination had also affected the electromagnetic properties of composites through the measurements of complex permittivity and permeability. Using the transmission line theory, we calculated refection loss (RL) of composites with the variation thickness of 1.00–2.50 mm. Our composites tuned the minimum RL from the X band (RL = −29.6 dB at 11.4 GHz for Y-P2) to Ku band (RL = −16.3 dB at 15.7 GHz for Y-P4 and RL = −26.4 dB at 16.6 GHz for Y-P4). For maximum effective bandwidth, our composites covered a huge range from the S and C bands (Y-P0 with 3.9 GHz in the range of 3.4–7.3 GHz) through the X band (Y-P2 with 3.9 GHz in the range of 9.0–12.9 GHz) to the Ku band (Y-P4 with 4.0 GHz in the range of 13.8–17.8 GHz). Those properties proved that the composites could act as promising absorbers in the S, C, X, and Ku bands.  相似文献   

8.
The microwave absorber nanocomposites consisting of substituted M-type hexaferrite Ba0.8Gd0.2Fe11.5Co0.5O19 and polyetheretherketone (PEEK) have been investigated for X-band applications. Composites with hexaferrite to PEEK ratios 5:0, 4:1, 3:2, 2:3, 1:4, 0:5 have been synthesized by a micro-emulsion method. XRD results confirm the hexagonal structure of the hexaferrite with average crystallite size up to 37.2 nm. Magnetic properties reveal that saturation magnetization Ms increases whereas coercivity Hc decreases by increasing the ferrite content in the composites. Complex permittivity and permeability have been tailored with ferrite content in the X-band. The dielectric constant reduces from 5.3 to 3.25 while permeability increases up to 1.37 with increasing ferrite concentrations. The microwave results show the minimum reflection loss of ?10.79 dB for composite with 80% ferrite.  相似文献   

9.
In this study, Y3−xLaxAl5O12 (0 ≤ x ≤ 0.09) ceramics were synthesized, and the phase composition, lattice evolution, and microwave dielectric properties were investigated in detail. Scanning electron microscopy confirms that the addition of moderate amounts of La2O3 improves the grain development of YAG ceramics, but excessive doping destabilizes the crystal structure. Transmission electron microscopy characterization shows that the variation of the dielectric properties of the samples with x-value is related to the occurrence of benign dislocation structures caused by modifications in the type and content of the A-site rare-earth ions. The variations in relative density, dielectric constant, and quality factor remain basically coordinated. The optimum microwave dielectric properties of La3+ doped YAG samples are exhibited as εr = 10.61, Q × f = 187, 542 GHz, τf = −31.2 ppm/°C when La2O3 is doped at x = 0.015.  相似文献   

10.
The solid-state reaction was adopted to prepare a series of LiCo1−xMgxO2 powders doped with different amount of Mg2+. The XRD patterns reveal single phase for all the prepared materials. The shift of the electronic structure of LiCo1−xMgxO2 has been investigated by X-ray photoelectron spectroscopy to confirm the single phase for material. Influence of dopant amount on the electromagnetic properties of LiCoO2 powders was analyzed. The dielectric and the microwave absorption properties were evaluated. Results showed that with the increase in Mg the complex permittivity decreased after increasing. Maximum values of both real part (ε′ = 16.2 at 8.2 GHz) and imaginary part (ε″ = 4.1 at 8.2 GHz) were obtained for x = 0.06. Monolayer absorbent containing 75 wt% LiCo0.94Mg0.06O2 had the peak microwave absorption properties in a thickness of 2.1 mm. The available bandwidth (<−10 dB) was obtained in 8.4-10.2 GHz and the minimum reflection loss was −50.4 dB, which indicated that LiCo1−xMgxO2 powders would be potential materials as microwave absorption.  相似文献   

11.
《Ceramics International》2016,42(8):9830-9835
This is the first report ever on (Mn2+–Zr4+) doped M-type lanthanum strontium hexaferrite with general formula, Sr0.85La0.15(MnZr)xFe12−2xO19 where x=0.0, 0.25, 0.50, 0.75, and 1.0, prepared by citrate auto-combustion method. These ferrites were characterized by X-ray diffraction (XRD), Scanning electron microscope (SEM), Energy dispersive X-ray spectroscopy (EDX) and Vibrating sample magnetometer (VSM). X-ray diffraction patterns show the formation of high purity hexaferrite phase without other secondary phases for all the synthesized samples. It was observed from magnetic hysteresis data that the coercive force is reduced from 5692.5 Oe to 1669.2 Oe with increase in doping contents but the net magnetization of the samples varies slightly from 60.6 to 55.2 emu/gm. High saturation magnetization (Ms), low coercivity (Hc) and remanence magnetization (Mr) values of these materials make them particularly suitable for data recording.  相似文献   

12.
《Ceramics International》2023,49(4):6487-6499
Ba0.6Sr0.4-xYbxFe12-yCoyO19, (0.0≤x ≤ 0.125, 0.0≤y ≤ 1.25) M-type hexaferrite were synthesized using the auto combustion sol-gel process. The synthesized samples were then sintered at 1200 °C for 5 h in a muffle furnace. XRD, FTIR, Raman, and Photoluminescence spectroscopies were used to analyse all the samples. XRD technique was used for structural examination of Ba0.6Sr0.4-xYbxFe12-yCoyO19. The XRD patterns of Yb–Co co-substituted M-type hexaferrites revealed the pure single phase of synthesized samples. Change in Yb–Co concentration influenced lattice parameters and unit cell volume. The variations in lattice constants "a" and "c" values are 5.891–5.862 and 23.180–23.317. FTIR spectroscopic data graphs revealed the formation of several absorption bands from 430 cm?1 to 3000 cm?1. The strain in the unit cell produced by substitution changes in Raman spectra which is also confirmed by XRD. Many 630 nm–700 nm emissions were observed in the PL spectra of Ba0.6Sr0.4-xYbxFe12-yCoyO19. Furthermore, a bandgap of 1.961–1.875 eV was observed for the pure sample. The substitution improves the dielectric losses and Ac conductivity. The Maxwell-Wagner theory was used to investigate the changing trends of characteristics regarding dielectric parameters. The findings show that the samples with the appropriate cationic substitution can be used in microwave and high-frequency applications.  相似文献   

13.
《Ceramics International》2023,49(3):4599-4606
The impact of La substitution has been explored systematically in the present work, it covers a rough scan of the range of solubility of Lanthanum in the Sr3Co2Fe24O41 (SCFO) structure. The La substituted Z-type hexaferrites Sr3-xLaxCo2Fe24O41, with x = 0.00, 0.15, 0.30, and 0.45, have been prepared via solid-state reaction route and named as SCFO, SLCFO5, SLCFO10 and SLCFO15 respectively. The structure and particle morphology of the samples have been investigated via variety of structural characterization methods like X-ray diffraction (XRD), Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM). A substantial change in structural properties beyond x ≥ 0.45 suggests that their exists a limit of Lanthanum solubility in the Sr3-xLaxCo2Fe24O41 which is x = 0.45. The dielectric properties (ε′ & ε′′) of SCFO, SLCFO5, SLCFO10 and SLCFO15 were examined by varying temperature from 313 to 613 K in the frequency range of 500 Hz to 10 MHz. The dielectric responses of all the samples are frequency-dependent and thermally stimulated, with relaxation-type dielectric behavior. From M-H loops, it has been observed that with increasing La substitution, the saturation magnetization value reduces from 63.85 to 59.17 emu/g, whereas coercivity increases from 109.74 to 450.51 oersted, indicating an increase in magnetic hardness. The saturation magnetization (Ms) and Magneto crystalline anisotropy constant (K1) were calculated by fitting the experimental data. A weak signature of magneto-electric coupling is observed by employing an indirect method in the SCFO sample.  相似文献   

14.
To solve the heavy mass problem of the traditional spinel ferrite using as the microwave absorber, the CoxZn(1?x)Fe2O4 (= 0.2, 0.4, 0.6, 0.8) ferrite nanofibres were synthesized by electrospinning method. The phase composition, morphology, and electromagnetic properties were analyzed. The results showed that all the as‐prepared CoxZn(1?x)Fe2O4 ferrites exhibited the homogeneous nanofibrous shape. The saturation magnetization and coercivity were enhanced by tuning the Co2+ content. The electromagnetic loss analysis indicated that the Co0.6Zn0.4Fe2O4 ferrite nanofiber performed the strongest microwave attenuation ability. The microwave absorbing coating containing 15 wt% of Co0.6Zn0.4Fe2O4 ferrite nanofiber showed the reflection loss less than ?10 dB in the whole X‐band and 80% of the Ku‐band frequencies. Meanwhile, the surface density was only 2.4 Kg/m2.  相似文献   

15.
《Ceramics International》2023,49(2):1888-1895
The study on the magnetocrystalline anisotropy (MA) of La–Co co-substituted strontium hexaferrite (La–Co SrM) shows a joint effect of Fe2+ and Co2+ ions in the enhancement of MA. Since the role of Fe2+ single ion has been studied with La-substituted strontium ferrite, in this work, Co-substituted strontium hexaferrite SrFe12-xCoxO19 (Co-SrM) single crystals were successfully grown for 0 ≤ x ≤ 0.31 by the Na2CO3 flux method to elucidate the anisotropy of Co2+ single ions. Co-substitution in this preparation condition has a limit solubility of 0.31 and enhances uniaxial magnetic anisotropy field HA by 19% for 0.03 = x ≤ 0.11, with a mere loss of 7% of saturation magnetization MS at 5 K. The enhanced HA of Co-SrM is reported for the first time, even higher than that of La–Co SrM, which is suitable to be used as permanent magnets in this concentration range. But with the further substitution of Co, the planar anisotropy of x = 0.31 was observed at 5 K. The potential nonlinear magnetic structure of Co-SrM remains to be discovered for magnetoelectric effects. This work is also of great significance as a complement to the magnetocrystalline anisotropy study of La–Co SrM.  相似文献   

16.
In this work, the physical properties of nanocrystalline samples of La0.7Sr0.3Mn1−xFexO3 (0.0 ≤ x ≤ 0.20) perovskite manganites synthesized by the reverse micelle (RM) technique were explored in detail. The phase purity, crystal structure, and crystallite size of the samples were determined using X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. All the samples had rhombohedral crystal structure and crystallite size increased with increase in Fe content in La0.7Sr0.3MnO3. The scanning electron micrographs (SEMs) exhibited smooth surface morphology and nonuniform shape of the particles. The optical properties studied using UV-visible absorption spectroscopy revealed a decrease in the absorbance and optical band gap with an increase in Fe content in La0.7Sr0.3MnO3 compound. The temperature-dependent resistivity measurements revealed semiconducting nature of x = 0 and 0.1 samples up to the studied temperature range, while a metal-to-insulator transition was observed at higher Fe doping. Magnetic studies revealed weak ferromagnetism in all the samples and a reduction in the maximum magnetization with an increase in Fe content. A close correlation between electrical transport and magnetic properties was observed with the doping of Fe ion in La0.7Sr0.3MnO3 at Mn site. These results advocate strong interactions associated with the double exchange mechanism among Fe3+ and Mn3+ ions.  相似文献   

17.
《Ceramics International》2020,46(14):22338-22344
SrFe12-2xCoxRuxO19 become magnetically soft with Co and Ru doping. The magnetization is high, but the anistropic field becomes low. The FT-IR spectra suggest that Co and Ru substitute for Fe at the 4f1 site. At this site, the substitution of Co and Ru with low magnetic moments weakens the anisotropy. The sharp magnetic resonances observed in x = 0.3, 0.5 and 0.7 are due to the domain wall movement. The natural magnetic resonance frequency falls in the frequency of 2–18 GHz. The Co and Ru doping increases both the magnetic loss tangent and the dielectric loss tangent. The high magnetic and dielectric loss tangents are in favor of high attenuation factors. With good impedance matching and high attenuation factor, the microwave absorption properties are excellent in x ≥ 0.3. In x = 0.5, the bandwidth is 11.8 GHz centered at 10.5 GHz. In each x > 0.5 sample, the optimum bandwidth is broader than 9 GHz. In x = 1.1, at 1.9 mm, the absorption bandwidth is broader than 9 GHz from 9 GHz to higher than 18 GHz centered at 11.6 GHz. Compared with the advanced materials published in recent decades, the bandwidth of the present work are very competitive.  相似文献   

18.
《Ceramics International》2016,42(16):18154-18165
Nanoparticles of Co1−xNixFe2O4 with x=0.0, 0.10, 0.20, 0.30, 0.40 and 0.50 were synthesized by co-precipitation method. The structural analysis reveals the formation of single phase cubic spinel structure with a narrow size distribution between 13–17 nm. Transmission electron microscope images are in agreement with size of nanoparticles calculated from XRD. The field emission scanning electron microscope images confirmed the presence of nano-sized grains with porous morphology. The X-ray photoelectron spectroscopy analysis confirmed the presence of Fe2+ ions with Fe3+. Room temperature magnetic measurements showed the strong influence of Ni2+ doping on saturation magnetization and coercivity. The saturation magnetization decreases from 91 emu/gm to 44 emu/gm for x=0.0–0.50 samples. Lower magnetic moment of Ni2+ (2 µB) ions in comparison to that of Co2+ (3 µB) ions is responsible for this reduction. Similarly, overall coercivity decreased from 1010 Oe to 832 Oe for x=0.0–0.50 samples and depends on crystallite size. Cation distribution has been proposed from XRD analysis and magnetization data. Electron spin resonance spectra suggested the dominancy of superexchange interactions in Co1−xNixFe2O4 samples. The optical analysis indicates that Co1−xNixFe2O4 is an indirect band gap material and band gap increases with increasing Ni2+ concentration. Dispersion behavior with increasing frequency is observed for both dielectric constant and loss tangent. The conduction process predominantly takes place through grain boundary volume. Grain boundary resistance increases with Ni2+ ion concentration.  相似文献   

19.
Ba1-xCaxFe12O19 (x?=?0.0, 0.1, 0.2, 0.3 and 0.4, BCFO) ceramics were prepared using high-temperature solid-state method and the effect of Ca2+ substitution was investigated. The grain size of BCFO ceramics sintered at 1250?°C for 2?h increases from 1?µm to 5?µm as Ca2+ added. The BCFO ceramics show a typical hard magnetic behavior with a maximum saturation magnetization (MS) of 51.8?emu?g?1 at x?=?0.2. The bandwidth of microwave reflection loss (RL) below ??10?dB (> 90.0% microwave absorption) is obtained in 7.60???9.8?GHz with the minimum RL ??30.8?dB at 8.5?GHz for x?=?0.2 (thickness 2.0?mm), which makes Ba0.8Ca0.2Fe12O19 ceramic a potential microwave absorption candidate.  相似文献   

20.
A series of Ba1.5Sr1.5Co2+xZrxFe24-2xO41 hexaferrites (x = 0.00, 0.01, 0.03, 0.05, 0.07, and 0.09) were successfully prepared by the conventional solid-state reaction method. It was found that as the Co2+ and Zr4+ ions entered the hexaferrite structure, the lattice parameters increased, whereas the relative density increased when x = 0.00-0.03 and then decreased. A suitable amount of substitution increased the DC resistivity, reduced the magnetic and dielectric losses, and made the μ $\mu ^{\prime}$ and ε $\varepsilon ^{\prime}$ closer to each other. At x = 0.03, the relative density and DC resistivity of the samples reached their maxim. Besides, both the magnetic and dielectric losses were lowest within the frequency range of 10 MHz-1 GHz. Meanwhile, the hexaferrite was impedance matched to free space, and the miniaturization factor was about 15. Therefore, this low-loss ferrite with almost equal permeability and permittivity could be meaningful for antenna miniaturization and high-frequency applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号