首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
《Ceramics International》2016,42(15):17137-17147
The properties of ceramic matrix composites strongly depend upon their complex internal structures. To better understand and improve the properties of the silicon carbide fiber-reinforced silicon carbide matrix composites (SiCf/SiC), we explored the microstructural properties of composites reinforced with either two-dimensional (2D) woven or three-dimensional (3D) braided preforms using synchrotron X-ray computed microtomography. Transects and volumetric images of the composites were reconstructed from objection images and the microstructures were investigated in three spatial directions. The network of void space in a composites was visualized in 3D and quantitative analysis of the porosity was performed to characterize the fiber-tissue structures. 2D-woven SiCf/SiC composite exhibited important fluctuations of porosity in different directions and the stacking of plies had a significant effect on the porosity distribution. In contrast, 3D-braided SiCf/SiC composites showed much less variation of porosity. We found the degree of densification of the composite also influenced the porosity distribution.  相似文献   

2.
《Ceramics International》2016,42(15):16535-16551
The hysteresis loops of C/SiC ceramic-matrix composites (CMCs) with different fiber preforms, i.e., unidirectional, cross-ply, 2D and 2.5D woven, 3D braided, and 3D needled at room temperature have been investigated. Based on fiber slipping mechanisms, the hysteresis loops models considering different interface slip cases have been developed. The effects of fiber volume fraction, matrix cracking density, interface shear stress, interface debonded energy, and fibers failure on hysteresis loops, hysteresis dissipated energy, hysteresis width, and hysteresis modulus have been analyzed. An effective coefficient of fiber volume fraction along the loading direction (ECFL) was introduced to describe fiber preforms. The hysteresis loops, hysteresis dissipated energy and hysteresis modulus of unidirectional, cross-ply, 2D and 2.5D woven, 3D braided and 3D needled C/SiC composites have been predicted.  相似文献   

3.
Two series of C/C–SiC composites were fabricated via precursor infiltration pyrolysis (PIP) and chemical vapor infiltration (CVI) using porous C/C composites with different original densities as preforms, respectively. The tribological characteristics of C/C–SiC braking composites were investigated by means of MM-1000 type of friction testing machine. The friction and wear behaviors of the two series of composites were compared and the factors that influence the friction and wear properties of C/C–SiC composites were discussed. Results show that the friction and wear properties relate close-knit to the content of SiC and porosity. As the original preform density increasing, the content of SiC and porosity decrease, and then the friction coefficient increases obviously, the braking time and the wear rate both decrease. Preparation techniques play an important role in the tribological properties of C/C–SiC composites. Compared with PIP process, the samples from CVI have a little higher friction coefficient, shorter braking time and higher wear rate.  相似文献   

4.
Techniques based on vacuum bagging (VB) and electrophoretic impregnation (EPI) have been investigated for the impregnation of SiC powder into layered Nicalon SiC fabric preforms. The aim was to produce preimpregnated samples for subsequent chemical vapor infiltration (CVI) with reduced intertow porosity that arises from the construction of the fabric layers while leaving unblocked the intratow porosity that is so indispensable for a successful infiltration. Because the goal was simply to learn about the ability to impregnate the samples, no interphase coating was applied to the fibers as would normally be used when producing SiCf/SiC composites. While the VB process generally yielded much stronger preforms, depending on the pressure used and the powder particle size, it resulted in powder becoming located in the intratow rather than the intertow porosity. In contrast, provided an appropriate electrode arrangement was used, EPI offered the potential for a more controlled impregnation process with the powder primarily found in the intertow porosity; however, the preforms were very weak and delaminated easily. The combination of the two processes resulted in a very successful approach, with greater uniformity of particle infiltration and higher green strengths, while largely avoiding impregnating the intratow porosity.  相似文献   

5.
Open porosity cellular SiC-based ceramics have a great potential for energy conversion, e.g. as solar receivers. In spite of their tolerance to damage, structural applications at high temperature remain limited due to high production costs or inappropriate properties. The objective of this work was to investigate an original route for the manufacturing of porous SiC ceramics based on 3D printing and chemical vapor infiltration/deposition (CVI/CVD). After binder jetting 3D-printing, the green α-SiC porous structures were reinforced by CVI/CVD of SiC using CH3SiCl3/H2. The multiscale structure of the SiC porous specimens was carefully examined as well as the elemental and phase content at the microscale. The oxidation and thermal shock resistance of the porous SiC structures and model specimens were also studied, as well as the thermal and mechanical properties. The pure and dense CVI/CVD-SiC coating considerably improves the mechanical strength, oxidation resistance and thermal diffusivity of the material.  相似文献   

6.
《Ceramics International》2020,46(5):6234-6242
SiCw/3D-SiC composites were fabricated by chemical vapor infiltration (CVI) of the 3D SiC lattices, which were prepared via direct ink writing of polycarbosilane-based suspensions. Microstructure, composition and tensile strength of the composites were investigated. Curing and pyrolysis temperature greatly affected the shrinkage, weight loss, density and composition of the 3D SiC. Although sound structure with spanning feature was achieved, cracks and pores in 3D SiC were formed during the pyrolysis owing to the large shrinkage. CVI process decreased the porosity and led to fully dense surface of the SiCw/3D-SiC composites. After 60h of CVI, short β-SiC fibres or long SiC whiskers were deposited in the structural spacing of 3D lattices or spherical pores inside the filaments, respectively. The tensile strength of the composites by CVI increased from 3.3 MPa to 15.7 MPa (20 h) and 47.3 MPa (60 h), due to the high strength of dense CVI layers and in-situ formed SiC whiskers in pores. This work showed a way to strengthen the 3D SiC with in-situ formed whiskers via the polymer precursor routes.  相似文献   

7.
Si/SiC ceramic composite was prepared by infiltration of liquid silicon into carbon preforms that was made from cotton fabric and phenolic resin. This composite was subjected to the chemical vapour infiltration (CVI), using methyltrichlorosilane as a precursor gas. The effect of infiltration time on densification and mechanical properties was studied. Results show a significant improvement in density by pore closure. Flexural strength increases with increasing infiltration time. However, beyond 60 h of infiltration, the strength improvement was insignificant. The high temperature oxidation resistance of the above ceramics was also studied. The CVI treated samples show considerable resistance to oxidation compared to untreated samples. Thermogravimetric analysis also confirmed the better oxidation resistance of the CVI treated samples.  相似文献   

8.
《Ceramics International》2017,43(16):13276-13281
Chemical vapor infiltration (CVI) is a prominent process for fabricating carbon fiber/silicon carbide (C/SiC) composites. However, the preparation of enclosed-structure or thick-section C/SiC composites/components with CVI remains a challenge, since the difficulty of densification increases. Here, machining-aided CVI (MACVI) is designed, in which infiltration-assisting holes are utilized (machined) to increase matrix deposition. To validate the approach, thick-section (10 mm thick) C/SiC composites were fabricated by MACVI. Porosity analysis and microstructure characterization were performed on the fabricated MACVI C/SiC composites and their CVI counterparts, showing a density increase up to 12.7% and a porosity decrease up to 32.1%. The mechanical behavior of the fabricated MACVI C/SiC composites was characterized, showing an increase of flexural strength by a factor of 1.72 at most. Besides, the toughness also largely increases. Both the porosity decrease and the strength and toughness increase brought by MACVI demonstrate its effectiveness for fabricating stronger and tougher enclosed-structure or thick-section ceramic matrix composites/components.  相似文献   

9.
The film-boiling chemical vapor infiltration (CVI) process is a fast process developed for composite material fabrication, and especially carbon/carbon composites. In order to help define optimal conditions, a local 1D model has been developed to study the densification front which establishes itself during the processing of a carbon/carbon fibrous preform. The model features heat conduction, precursor gas diffusion, densification reactions and structural evolution of the porous medium. The effects of total mass flux, Thiele modulus, porous medium geometry on front behavior parameters such as width, velocity and residual porosity are presented as semi-analytical correlations. An existence criterion is produced, which involves a minimal heat flux. Comparison between process-scale experiments and simulation is then possible by inserting the semi-analytical results achieved in the local study of the front into a light numerical model involving the entire preform. The model has been validated with respect to previous experimental and numerical data.  相似文献   

10.
C/C–SiC composite was fabricated with time efficiency and low cost by a two-step process. A quasi 3D carbon-fiber-felt was firstly densified to C/C composite in 2–5 h by a thermal gradient CVI method based on precursor of kerosene. Then, the C/C composite of different porosities was reactively infiltrated with Si for 40 min to obtain C/C–SiC composite. The influence of the porosity of the C/C composite on the microstructure and mechanical properties of the C/C–SiC composite was investigated. The results show that the density of the C/C–SiC composite increases from 2.0 g/cm3 to 2.3 g/cm3 while its porosity decreases from 5.8% to 1.7% with the increasing porosity of the C/C composite. Moreover, the porosity of the C/C composite affects both the amounts of β-SiC, Si phases and the mechanical properties of the C/C–SiC composite. The flexural strength and modulus of the C/C–SiC composite are much higher than those of the C/C composite. The C/C–SiC composite from the C/C composite of 19.7% porosity has the highest flexural strength and modulus, which are 132 MPa and 14.4 GPa, respectively.  相似文献   

11.
High‐temperature mechanical properties and tension‐tension fatigue behavior of three advanced SiC/SiC composites are discussed. The effects of steam on high‐temperature fatigue performance of the ceramic‐matrix composites are evaluated. The three composites consist of a SiC matrix reinforced with laminated, woven SiC (Hi‐Nicalon?) fibers. Composite 1 was processed by chemical vapor infiltration (CVI) of SiC into the Hi‐Nicalon? fiber preforms coated with boron nitride (BN) fiber coating. Composite 2 had an oxidation inhibited matrix consisting of alternating layers of silicon carbide and boron carbide and was also processed by CVI. Fiber preforms had pyrolytic carbon fiber coating with boron carbon overlay applied. Composite 3 had a melt‐infiltrated (MI) matrix consolidated by combining CVI‐SiC with SiC particulate slurry and molten silicon infiltration. Fiber preforms had a CVI BN fiber coating applied. Tensile stress‐strain behavior of the three composites was investigated and the tensile properties measured at 1200°C. Tension‐tension fatigue behavior was studied for fatigue stresses ranging from 80 to 160 MPa in air and from 60 to 140 MPa in steam. Fatigue run‐out was defined as 2 × 105 cycles. Presence of steam significantly degraded the fatigue performance of the CVI SiC/SiC composite 1 and of the MI SiC/SiC composite 3, but had little influence on the fatigue performance of the SiC/SiC composite 2 with the oxidation inhibited matrix. The retained tensile properties of all specimens that achieved fatigue run‐out were characterized. Composite microstructure, as well as damage and failure mechanisms were investigated.  相似文献   

12.
A novel method has been developed to fabricate carbon fiber reinforced SiC (Cf/SiC) composites by combining 3D printing and liquid silicon infiltration process. Green parts are firstly fabricated through 3D printing from a starting phenolic resin coated carbon fiber composite powder; then the green parts are subjected to vacuum resin infiltration and pyrolysis successively to generate carbon fiber/carbon (Cf/C) preforms; finally, the Cf/C preforms are infiltrated with liquid silicon to obtain Cf/SiC composites. The 3D printing processing parameters show significant effects on the physical properties of the green parts and also the resultant Cf/C preforms, consequently greatly affecting the microstructures and mechanical performances of the final Cf/SiC composites. The overall linear shrinkage of the Cf/SiC composites is less than 3%, and the maximum density, flexural strength and fracture toughness are 2.83?±?0.03?g/cm3, 249?±?17.0?MPa and 3.48?±?0.24?MPa m1/2, respectively. It demonstrates the capability of making near net-shape Cf/SiC composite parts with complex structures.  相似文献   

13.
3D C/SiC复合材料的孔隙率与性能的关系   总被引:8,自引:0,他引:8  
用浸债裂解法(PIP)和均效化学气相渗透法(ICVI)混合工艺制备了3DC/SiC复合材料,研究了3DC/SiC复合材料中基体含量。孔隙分布特征与复合材料性能的关系。结果表明,基体中CVI-SiC相对含量增加,开孔率增加,闭孔率减少,复合材料的弯曲强度和抗氧化性能提高。孔隙对复合材料性能的影响关系是由两种基体的特点、结构、致密化工艺及氧化机理决定的。  相似文献   

14.
A commercial polysilazane is used as a silicon carbonitride matrix precursor for the manufacture of ceramic matrix composites using bi-directional SiC Nicalon fabrics as reinforcing material. The objective is to develop a simple and fast process leading to materials able to compete with SiC/C/SiC composites obtained by the Chemical Vapour Infiltration (CVI) route. Two processes are investigated: (1) a ‘conventional’ process using the densification of a SiC fibre preform by several cycles of impregnation of the preform with the polymer followed by pyrolysis and (2) a ‘modified’ process consisting in a powder filling of the fibre preform prior to the precursor impregnation and pyrolysis. This paper describes the different steps of both processes. The materials obtained are characterised in terms of their porosity, microstructure and mechanical properties. ©  相似文献   

15.
《Ceramics International》2021,47(19):26971-26977
The SiCf/SiC composites have been manufactured by a hybrid route combining chemical vapor infiltration (CVI) and precursor infiltration and pyrolysis (PIP) techniques. A relatively low deposition rate of CVI SiC matrix is favored ascribing to that its rapid deposition tends to cause a ‘surface sealing’ effect, which generates plenty of closed pores and severely damages the microstructural homogeneity of final composites. For a given fiber preform, there exists an optimized value of CVI SiC matrix to be introduced, at which the flexural strength of resultant composites reaches a peak value, which is almost twice of that for composites manufactured from the single PIP or CVI route. Further, this optimized CVI SiC amount is unveiled to be determined by a critical thickness t0, which relates to the average fiber distance in fiber preforms. While the deposited SiC thickness on fibers exceeds t0, closed pores will be generated, hence damaging the microstructural homogeneity of final composites. By applying an optimized CVI SiC deposition rate and amount, the prepared SiCf/SiC composites exhibit increased densities, reduced porosity, superior mechanical properties, increased microstructural homogeneity and thus reduced mechanical property deviations, suggesting a hybrid CVI and PIP route is a promising technique to manufacture SiCf/SiC composites for industrial applications.  相似文献   

16.
Interface-resolved direct numerical simulations (DNSs) of chemical vapor infiltration (CVI) have been performed over a range of furnace-operating conditions (Thiele moduli) and for practical woven preform geometries. A level-set method is used to resolve the geometry of the initial preform at tow scale. The interface between the vapor and solid phase is then evolved in time through the entire CVI densification cycle, fully resolving the time-varying topology between the two phases. In contrast to previous level-set methods for CVI simulation, the physical reaction and diffusion processes govern the level-set movement in the current approach. The surface deposition kinetics is described by the usual one-step model. In this paper, the DNS data are used to study the evolving porosity, surface-to-volume ratio, and flow infiltration properties (permeability and effective diffusivities). Comparisons are made to popularly-assumed structure functions and the standard, Kozeny–Carmen porous media model commonly employed in modeled CFD simulations of CVI. The virtual DNS experiments reveal a Thiele modulus and preform geometry (fabric layup) dependence which the existing microstructural and infiltration models are not able to describe throughout the entire densification process. The DNS-based, woven geometry-specific correlations can be applied directly to mean-field, furnace-scale CFD simulations.  相似文献   

17.
Precursor infiltration and pyrolysis (PIP) and chemical vapor infiltration (CVI) were used to fabricate SiC/SiC composites on a four-step 3D SiC fibre preform deposited with a pyrolytic carbon interface. The effects of fabrication processes on the microstructure and mechanical properties of the SiC/SiC composites were studied. Results showed the presence of irregular cracks in the matrix of the SiC/SiC composites prepared through PIP, and the crystal structure was amorphous. The room temperature flexural strength and modulus were 873.62 MPa and 98.16 GPa, respectively. The matrix of the SiC/SiC composites prepared through CVI was tightly bonded without cracks, the crystal structure had high crystallinity, and the room temperature bending strength and modulus were 790.79 MPa and 150.32 GPa, respectively. After heat treatment at 1300 °C for 50 h, the flexural strength and modulus retention rate of the SiC/SiC composites prepared through PIP were 50.01% and 61.87%, and those of the composites prepared through CVI were 99.24% and 96.18%, respectively. The mechanism of the evolution of the mechanical properties after heat treatment was examined, and the analysis revealed that it was caused by the different fabrication processes of the SiC matrix. After heat treatment, the SiC crystallites prepared through PIP greatly increased, and the SiOxCy in the matrix decomposed to produce volatile gases SiO and/or CO, ultimately leading to an increase in the number of cracks and porosity in the material and a decrease in the material load-bearing capacity. However, the size of the SiC crystallites prepared through CVI hardly changed, the SiC matrix was tightly bonded without cracks, and the load-bearing capacity only slightly changed.  相似文献   

18.
Ruiying Luo 《Carbon》2002,40(8):1279-1285
A technology used to prepare C/C composites using a rapid directional diffused (RDD) chemical vapor infiltration process has been investigated. General RDD technologies were explored, and optimal parameters were determined. The friction and wear properties of this material were researched. The results showed that in the RDD process, propylene and nitrogen were rapidly and directionally diffused into the carbon preforms enabling carbon deposition to occur from the inside of the preform to the outside. This method prevents the formation of an outer crust on the surface of preforms and facilitates uniformity of densification. With the RDD process no surface machining was required between chemical vapor infiltration (CVI) cycles thereby enabling continuous densification and reducing the CVI cycle times. The optimum processing conditions for RDD CVI were as follows; furnace temperature 950 °C; and furnace pressure 6.7 kPa. The C/C composites produced using RDD CVI processing exhibited good friction performance. Their curves of the brake moment with the velocity are stable under dry conditions, and their wet brake moment is greatly reduced. The average thickness wear is decreased to 9.5×10−4 mm/surface/stop.  相似文献   

19.
《Ceramics International》2017,43(12):8873-8878
Film formed by carbon nanotubes is usually called carbon nanotube film (CNTf). In the present study, CNTf fabricated by floating catalyst method was used to prepare CNTf/SiC ceramic matrix composites by chemical vapor infiltration (CVI). Mechanical and electrical properties of the resulting CNTf/SiC composites with different CVI cycles were investigated and discussed, and the results revealed that the CNTf has a good adaptability to CVI method. Tensile test demonstrated an excellent mechanical performance of the composites with highest tensile strength of 646 MPa after 2 CVI cycles, and the strength has a decline after 3 CVI cycles for an excessively dense matrix. While, the elastic modulus of the composite increased with the CVI cycles and reached 301 GPa after 3 CVI cycles. Tensile fracture morphologies of the composites were analyzed by scanning electron microscope to study the performance change laws with the CVI cycles. With SiC ceramic matrix infiltrated into the CNTf, enhanced electrical conductivity of the CNTf/SiC composite compared to pure CNTf was also obtained, from 368 S/cm to 588 S/cm. Conductivity of the SiC matrix with free carbon forming in the CVI process was considered as the reason.  相似文献   

20.
Carbon nanotube‐reinforced silicon carbide composites (CNT/SiC) produced by direct infiltration of matrix into a porous CNT arrays have been demonstrated to possess a unique microstructure and excellent micro‐mechanical properties. However, the thickness of the array preforms is usually very small, typically less than 2 mm. Therefore, fabrication of macroscopic CNT/SiC composites by chemical vapor infiltration (CVI) process requires that the nanoscale fillers could form macroscopic architectures with an open pore network. Here, this study reports an experimental strategy for the fabrication of SiC matrix composites reinforced by CNT based on an ice‐segregation‐induced self‐assembly (ISISA) technique. Macroscopic CNT aerogel with well‐defined macroporous network was produced by ISISA technique and was subsequently infiltrated by SiC in a CVI reactor. After five CVI cycles, the porosity of as‐fabricated composites was 11.6±0.3% and the machined specimens exhibited lamellar structure with parallel lamellaes intersected at discrete angles. By observed, there are in fact five different representative anisotropic macrostructures, the compressive strengths of these five different loading modes with respect to lamella orientation were 933±55, 619±34, 200±45, 199±21, and 297±41 MPa, respectively, and the failure mechanisms were attributed to the anisotropic nature of the macrostructures. Energy dissipation toughening mechanism at the nanoscale such as CNT pull‐out was observed and the phase composition of the fabricated materials included β‐SiC, CNT, and SiO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号