首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Digital light processing (DLP) 3D printing has been utilized to fabricate controlled porous β-tricalcium phosphate (β-TCP) scaffolds, which promote cell adhesion and angiogenesis during bone regeneration. However, the current limitation of DLP 3D printing for the fabrication of β-TCP scaffold is how to prepare a low viscosity ceramic slurry and remove the toxicity of residual non-polymerized slurry. The present study has developed a low viscosity ceramic slurry system by mixing β-TCP with photosensitive acrylate resin, and the viscosity of slurry is about 3 Pa s and the solid content of β-TCP can be as high as 60 wt%. After optimizing the ratio of slurry, printing, degreasing and sintering processes, the maximum compressive strength of the DLP printed scaffolds reaches up to 9.89 MPa, while the porosity keeps ca. 40%. According to the proliferation of cells, it confirms the preserved biocompatibility of DLP-fabricated β-TCP scaffolds. These porous scaffolds made by DLP 3D printing technology is of great significance for bone regeneration, and will also help to expand the application of DLP technology in biomedical field.  相似文献   

3.
We present a novel method to fabricate SiBCN ceramic components with complex shapes from preceramic polymers by using digital light processing (DLP) 3D printing technology in this research work. The photocurable precursor for 3D printing was prepared by blending high ceramic yield polyborosilazane with photosensitive acrylate monomers. The material formulation and printing parameters were optimized to fabricate complicated SiBCN ceramic components with high precision. The printed SiBCN ceramic materials were pyrolyzed at different temperatures, and retained their fine features after pyrolysis. Their microstructures were characterized by FTIR, XRD and TEM respectively. Furthermore, the thermal stability and mechanical properties of the SiBCN ceramic samples were investigated and discussed in detail. The 3D printed SiBCN ceramic material exhibited excellent thermal stability and resistance to high temperature oxidation up to 1500?°C.  相似文献   

4.
《Ceramics International》2023,49(15):25216-25224
Ceramic cores are essential intermediate mediums in casting superalloy hollow turbine blades. The developing of additive manufacturing (AM) technology provides a new approach for the preparation of ceramic cores with complex structure. In this study, alumina oxide (Al2O3) ceramic cores with fine complex geometric shapes were fabricated by digital light processing (DLP) in high resolution. The maximum solid content of 70 vol% of ceramic slurry was adopted in the printing process, which is important for the regulation of deformations and mechanical properties. The effects of the printing parameters, including exposure intensity, printing layer thickness and sintering temperature on the microstructures and mechanical properties of printed samples were investigated. The decrease of residual stress and similar shrinkage in X, Y, and Z directions could be obtained by adjusting the printing parameters, which are crucial to prepare complex ceramic cores with high quality. Besides, the flexure strength and open porosity of ceramic cores reached 34.84 MPa and 26.94%, respectively, which were supposed to meet the requirement of ceramic cores for the fabrication of superalloy blades.  相似文献   

5.
Robocasting, or Direct Ink Writing, can be used to create dense mono- or multi-materials ceramic parts using micro-extrusion of ceramic pastes through needles, whose position is controlled in 3D. Rheological properties of the ceramic pastes, printing parameters and thermal post processes (drying, debinding and sintering) are key parameters to control the quality of the printed parts. In this work, the rheological properties (including yield stress, shear-thinning behavior, storage/loss moduli and recovery time) of alumina pastes were characterized. Correlations were established between on one side the rheological properties and the printing conditions and on the other side the extrudability, the shape fidelity and the mechanical performance of the final parts. This paper thus defines an extended definition of printability, which includes functional requirements of the final parts in addition to the more classical processability criteria.  相似文献   

6.
High Temperature Heat Exchangers (HTHXs) are used in many industrial processes and are likely to become key components in green power generation. For the development of HTHXs, novel designs and new materials need to be explored. Additive manufacturing (AM) opens many possibilities for novel designs. Extrusion-based AM in general, and composite extrusion modelling (CEM) in particular, offers the opportunity of using new binder systems, that cannot be employed in other AM techniques. MAX phases, due to their ceramic-metallic properties combination, are great candidates for HTHXs. In this work, the printability of Ti3SiC2 and Cr2AlC, through CEM with an innovative sustainable binder is explored. For this purpose, rheological properties of the feedstocks and the influence of the printing parameters are studied for each MAX phase feedstock. Microstructural analysis and final sample characterisation is performed, in order to determine the suitability of this technique to obtain near-net shape MAX phase parts.  相似文献   

7.
In this article, a first of its kind blend of polyvinyl chloride (PVC) and biocompatible polycaprolactone (PCL) is introduced by melt mixing and then 3D printed successfully via Fused Filament Fabrication (FFF). Experimental tests are carried out on PCL-PVC blends to assess thermo-mechanical behaviors, morphology, fracture toughness, shape-memory effects and printability. Macro and microscopic tests reveal that PVC-PCL compounds are miscible due to high molecular compatibility and strong interaction. This causes extraordinary mechanical properties specially for PVC-10 wt% PCL. In addition to the desired tensile strength (45 MPa), this material has a completely rubbery behavior at ambient temperature, and its total elongation is more than 81%. In addition, due to the high formability of PVC-PCL at ambient temperature, it has capability of being programed via different shape-memory protocols. Programming tests show that PVC-PCL blends have an excellent shape-memory effect and result in 100% shape recovery. SEM results prove a high improvement of PVC printability with the addition of 10 wt% PCL. Toughened PVC by PCL is herein added to the materials library of FFF 3D printers and expected to revolutionize applications of PVC compounds in the field of biomedical 3D and 4D printing due to its appropriate thermo-mechanical properties, supreme printability, and excellent biocompatibility.  相似文献   

8.
《Ceramics International》2021,47(23):32699-32709
Digital light processing (DLP)-based ceramic stereolithography has attracted significant attentions due to the high printing speed and high dimensional accuracy of DLP printers. However, undesired dropping of unfinished ceramic parts during printing, owing to inadequate adhesion between the first cured layer and the substrate of the building platform, still remains a challenge. In this study, the relationship between the adhesion properties of ultraviolet (UV)-curable alumina (α-Al2O3) suspensions and the functionalities and structures of UV-curable acrylate monomers was investigated. With an increase in the proportions of monofunctional monomers, the adhesion abilities of UV-curable alumina suspensions enhanced because of reduced volume shrinkage, however, inferior curing performances were observed due to a decrease in the double bond densities. Furthermore, the large-volume branched chain structures in monofunctional monomers and ethyoxyl groups in polyfunctional monomers effectively decreased the volume contraction, improving the adhesion performances of UV-curable alumina suspensions and facilitating the conversion of double bonds to provide excellent curing properties, further guaranteeing strong adhesion of these suspensions to the substrate.  相似文献   

9.
《Ceramics International》2022,48(1):304-312
In this study, a novel method was proposed for preparing high-flux ceramic membranes via digital light processing (DLP) three-dimensional (3D) printing technology. Two different alumina powders were well dispersed in a photosensitive resin to form a UV-curable slurry for DLP 3D printing. The effects of the grading ratio on the viscosity of the slurry and the porosity, pore size distribution, mechanical strength, roughness, and permeability of the ceramic membranes were systematically investigated. The thermal treatment conditions were also studied and optimized. The obtained ceramic membranes exhibited a uniform pore size distribution, a high porosity, a low tortuosity factor, and an asymmetric structure. The combination of these factors led to a high flux for the 3D-printed ceramic membranes. DLP 3D printing exhibited a good potential to be a strong candidate for the next generation of ceramic membrane fabrication technology.  相似文献   

10.
《Ceramics International》2019,45(15):18972-18979
Kaolin/graphene oxide composite has been widely utilized in aero-space and architectural engineering applications due to its excellent mechanical property. Direct ink writing (DIW) is a freeform rapid prototyping technology that could be used to accurately fabricate the resulting size with complex shapes. In this study, we reported the DIW of kaolin/graphene oxide (GO) composite suspensions (KGCS) to assemble 3D structures at ambient temperature for the first time. The effects of GO on the chemical constitution and microstructure of kaolin suspensions were investigated. Rheology was characterized to ensure printability of KGCS. The addition of GO in kaolin suspensions quickened a flocculation structure, which dramatically changed their rheology properties. The DIW of 3D structures from the optimal KGCS sample maintained their initial shape without spreading. The flexural and compressive strengths of the dried optimal KGCS samples were obviously enhanced due to the improvement and reduction of the micro-defects compared from cured kaolin matrix.  相似文献   

11.
The interaction of an efficient deflocculant, sodium hexametaphosphate (NaHMP), with illite and montmorillonite (Mt) samples of different origins was investigated analyzing the HMP uptake (adsorption on mineral surface and/or intercalation inside the interlayer space) and the ion release mechanisms. HMP adsorption isotherms on a standard Na-saturated illite were determined at different temperatures which yielded the thermodynamic parameters of the process and the maximum adsorbed amount of the ion on this mineral. The data indicate that the adsorption process is hindered with respect to that on kaolinite and is consistent with adsorption of HMP on the aluminol edge sites, forming Al–O–P linkages. The effect of HMP on the natural illite and Mt samples was analyzed using different techniques. Inductively coupled plasma optical emission spectroscopy (ICP-OES) was used to detect the concentration of P, Si, Al, Ca, Mg and K in deflocculant solutions wetting the clay minerals in order to identify the immobilization, dissolution and exchange reactions associated to the deflocculant activity. Thermal analysis and XRD measurements were used to gain information on the properties of the HMP-treated clay minerals. The peculiar ability of Mt samples to immobilize HMP is proposed to be due to intercalation processes involving the formation of Ca2 +/HMP complexes inside the interlayer space. These processes could be responsible of the well known decrease in the deflocculant efficiency of HMP in ceramic slurries rich in Mt.  相似文献   

12.
《Ceramics International》2023,49(6):9584-9591
SiO2-based ceramic cores are widely used in the preparation of gas turbine engine hollow blades due to their excellent chemical stability and easy removal after casting. In this paper, ZrSiO4 reinforced SiO2-based ceramics were fabricated using digital light processing (DLP) technology. The results showed that the addition of ZrSiO4 reduced the cure depth due to its high UV light absorptivity and refractive index. When the content of ZrSiO4 increased to 15 wt%, the cristobalite content reached the maximum, and radial shrinkage reached the minimum of 1.4%. ZrSiO4 grains could hinder the propagation of cracks, enhancing the room-temperature flexural strength. At 1550 °C, fracturing across SiO2 grains in SiO2-based ceramics led to the great improvement of high-temperature flexural strength. When the content of ZrSiO4 reached 15 wt%, the flexural strength at room temperature and high temperature was 11.5 MPa and 36.7 MPa, respectively. Therefore, the SiO2-based ceramics prepared using DLP technology have good room temperature and high temperature properties, and are expected to be used for hollow blade casting.  相似文献   

13.
The present article aims to explore the printability of scandia-stabilized zirconia ceramic parts using desktop and low-cost DLP 3D printer. The acrylate-based homogeneous slurries with zirconia powder stabilized by 6 mol.% of Sc2O3 (6ScSZ) and 10 mol.% of Sc2O3 and 1 mol.% of Y2O3 (10Sc1YSZ) were prepared with appropriate rheological and UV-curing properties. In comparison with yttria-stabilized zirconia, slurries filled with 6ScSZ and 10Sc1YSZ powders reviled lower viscosity at the same solid content. The cure depth of the suspensions was suitable to print the objects with 50 μm of layer thickness, good interlayers connection, and surface finishing. No critical defects in ceramics such as cracks or delamination were observed. Both ceramics have the Vickers microhardness value of 11 GPa and the high ionic conductivity up to 0.2 S/сm at 900 °C demonstrating that the DLP is a promising method of fabricating scandia-stabilized zirconia parts as electrolyte material for SOFC application.  相似文献   

14.
Recycling of electric arc furnace dust (EAFD) has great potential for industrial applications, due to its useful metal contents, including zinc. In this study, aqueous cyan ceramic ink for ink-jet printing applications was synthesized using EAFD. More specifically, cyan ceramic pigments were synthesized using an empirical composition of Zn(EAFD)XCo1-XAl2O4, in which expensive cobalt oxide is replaced by Zn-enriched EAFD. Zn(EAFD)0.25Co0.75Al2O4, which has a vivid cyan color, was selected as the optimum composition of cyan ceramic pigments for synthesizing aqueous cyan ceramic ink for ink-jet printing applications. To prevent nozzle clogging during ink-jet printing, the cyan ceramic pigments were micronized. The micronized pigments were mixed with distilled water and dispersant to fabricate aqueous cyan ceramic ink. To determine the optimized jettability and printability of this ink, its rheological properties, including viscosity and surface tension, were adjusted and analyzed. It was concluded that the jettability and printability of aqueous cyan ceramic ink produced via ink-jet printing could be enhanced by appropriately adjusting its viscosity.  相似文献   

15.
Wave-transmitting materials are a kind of multi-functional materials that protect the normal operation of communication and guidance systems of spacecraft in harsh environments. In this paper, we fabricate a broadband microwave transparent Si3N4-SiO2 composite ceramic with excellent performance through digital light processing (DLP) 3D printing technology. The influences of sintering temperature on the weight increase rate, density, dimensional shrinkage, phase composition, microstructure, bending strength and dielectric properties of Si3N4-SiO2 ceramic were all systematically studied. The strength of Si3N4-SiO2 ceramic sintered at 1350 ℃ was 77 ± 5 MPa. The relative permittivity of the ceramic is within the range of less than 4, and the loss tangent can be below 0.003. The 3D printed Si3N4-SiO2 ceramic material exhibited excellent wave-transparent performance.  相似文献   

16.
Three clays minerals namely illite (I), montmorillonite (M), and kaolin (K) were chosen as references to study the effect of mixture composition of clays on the mechanical properties and the shrinkage of the fired ceramic. The study was accomplished using the experimental design methodology. More specifically, a mixture design was carried out in order to establish relationships between mechanical strength and shrinkage of finished products and the proportions of the three clay mineral references in the mixture. The statistical study shows that the fitted models were adequate to describe these properties of fired ceramic bodies. The results demonstrate that the mechanical resistance was mainly governed by the amount of montmorillonite mineral. In fact, the mixture design performed in this study shows clearly that montmorillonite can be incorporated in industrial ceramic products up to 45 wt% with high mechanical resistance. On the other hand, the shrinkage decreases strongly with the amount of kaolin in the mixture and increases with the amount of illite while montmorillonite exhibits moderate effect on this property. The higher strength was shown in mixture in which mullite and anorthite appear together due to the presence of kaolinite and illite and give, as a consequence, a synergic power.  相似文献   

17.
Ceramic structures have attracted extensive attention due to their excellent high temperature properties, low density and function application after structural design. Herein, six different ceramic lattices based on struts and triply periodic minimal surfaces (TPMS) sheet lattices were designed and fabricated by digital light processing (DLP) using polymer precursor. The effects of unit cell size, relative density and other parameters on the compressive and shear properties of the structure were studied in detail. A structure optimized from Gyroid was put forward, which realized excellent mechanical properties under 15% low relative density (0.25 g/cm3). Results also suggested that the TPMS sheet lattices were more suitable for bearing under low relative density and the struts-based lattices were more sensitive to the parameters change, 20% is an important node where the mechanical properties of the structure decline significantly. Design of the structure in the loading direction can effectively improve the mechanical properties. This study provides a new basis for structural design under low relative density, which will aid in the further improvement of traditional structures and the development of the application of ceramic materials in mechanical structures.  相似文献   

18.
Digital-light-processing (DLP) three-dimensional (3D) bioprinting, which has a rapid printing speed and high precision, requires optimized biomaterial ink to ensure photocrosslinking for successful printing. However, optimization studies on DLP bioprinting have yet to sufficiently explore the measurement of light exposure energy and biomaterial ink absorbance controls to improve the printability. In this study, we synchronized the light wavelength of the projection base printer with the absorption wavelength of the biomaterial ink. In this paper, we provide a stepwise explanation of the challenges associated with unsynchronized absorption wavelengths and provide appropriate examples. In addition to biomaterial ink wavelength synchronization, we introduce photorheological measurements, which can provide optimized light exposure conditions. The photorheological measurements provide precise numerical data on light exposure time and, therefore, are an effective alternative to the expendable and inaccurate conventional measurement methods for light exposure energy. Using both photorheological measurements and bioink wavelength synchronization, we identified essential printability optimization conditions for DLP bioprinting that can be applied to various fields of biological sciences.  相似文献   

19.
Polymer derived silicon oxycarbide ceramic materials and silicon carbide whiskers reinforced ceramic composite are prepared through digital light processing (DLP) 3D printing technology in the present work. A new type of UV-curable preceramic polymer is firstly synthesized and then two types of photopolymer resins with and without SiC whiskers as reinforcement are prepared. Due to the high curing rate and good fluidity of the resins, they are applied in DLP 3D printing and various 3D objects with complicated structures and high printing resolution have been printed. The derived ceramic materials show amorphous microstructure and there is no apparent porosity and cracking throughout the whole sample surface of the ceramic materials and the SiC whiskers are uniformly embedded in the ceramic matrix and remain intact and unaffected during the pyrolysis process. The SiC whiskers reduced the shrinkage and mass loss. More importantly, it significantly improves the mechanical performance of the derived ceramic materials in which the compressive strength increases from 77.5 ± 10.2 MPa to 98.4 ± 12.3 MPa. Benefiting from the easiness of the fabrication, high printing resolution and excellent mechanical performance, the derived ceramic materials have great potential applications in various areas.  相似文献   

20.
《Ceramics International》2023,49(15):24861-24867
Ceramic cores are key components to form inner hollow structures in aero-engine blades, and 3D printing is an ideal molding technology for ceramic cores. In this work, silica-based ceramic cores are fabricate via 3D printing of digital light processing (DLP) stereolithography, and the anisotropy in microstructure and property are controlled by aluminum powders. The ceramic cores without aluminum powders exhibit anisotropic microstructure with interlayer gaps, which get narrower and disappear with doping of 7.5–10 wt% of aluminum powders, due to the volume expansion during oxidization reaction of aluminum powders filling the interlayer gaps. The anisotropy in mechanical property is rely on the printing direction, and the ratio of strength in different directions (σVH) is put forward to value the mechanical anisotropy; the ratios rise from 0.40 to 0.92 at room temperature and 0.51 to 0.97 at 1540 °C, as 7.5 wt% of aluminum is doped, and the optimized ceramic cores show high-temperature strengths of 16.6 MPa and 16.1 MPa in different printing directions. Even though ceramic cores with 10 wt% of aluminum show uniform microstructure and higher σVH ratio, the weak particle bonding within printing layers limits their mechanical property, and the strengths decrease to 13.8 MPa and 13.4 MPa at 1540 °C. This work inspires a new technique to excellent high-temperature mechanical properties with anisotropy control in 3D printing of ceramic cores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号