首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Si/B/C/N/H polymer T2(1), [B(C2H4Si(CH3)NH)3]n, was reacted with different amounts of H3Al·NMe3 to produce three organometallic precursors for Si/B/C/N/Al ceramics. These precursors were transformed into ceramic materials by thermolysis at 1400 °C. The ceramic yield varied from 63% for the Al-poor polymer (3.6 wt.% Al) to 71% for the Al-rich precursor (9.2 wt.% Al). The as-thermolysed ceramics contained nano-sized SiC crystals. Heat treatment at 1800 °C led to the formation of a microstructure composed of crystalline SiC, Si3N4, AlN(+SiC) and a BNCx phase. At 2000 °C, nitrogen-containing phases (partly) decomposed in a nitrogen or argon atmosphere. The high temperature stability was not clearly related to the aluminium concentration within the samples. The oxidation behaviour was analysed at 1100, 1300, and 1500 °C. The addition of aluminium significantly improved the oxide scale quality with respect to adhesion, cracking and bubble formation compared to Al-free Si(/B)/C/N ceramics. Scale growth rates on Si/B/C/N/Al ceramics at 1500 °C were comparable with CVD–SiC and CVD–Si3N4, which makes these materials promising candidates for high-temperature applications in oxidizing environments.  相似文献   

2.
Here we report on bulk Si–Al–O–C ceramics produced by pyrolysis of commercial poly(methylsilsesquioxane) precursors. Prior to the pyrolysis the precursors were cross-linked with a catalyst, or modified by the sol-gel-technique with an Al-containing alkoxide compound, namely alumatrane. This particular procedure yields amorphous ceramics with various compositions (Si1.00O1.60C0.80, Si1.00Al0.04O1.70C0.48, Si1.00Al0.07O1.80C0.49, and Si1.00Al0.11O1.90C0.49) after thermal decomposition at 1100 °C in Ar depending on the amount of Al-alkoxide used in the polymer reaction synthesis. The as-produced ceramics are amorphous and remain so up to 1300 °C. Phase separation accompanied by densification (1300–1500 °C) and formation of mullite at T > 1600 °C are the stages during heat-treatment. Bulk SiAlOC ceramics are characterized in terms of microstructure and crystallization in the temperature regime ranging from 1100 to 1700 °C. Aluminum-free SiOC forms SiC along with cracking of the bulk compacts. In contrast, the presence of Al in the SiOC matrix forms SiC and mullite and prevents micro cracking at elevated temperatures due to transient viscous sintering. The nano-crystals formed are embedded in an amorphous Si(Al)OC matrix in both cases. Potential application of polysiloxane derived SiOC ceramic in the field of ceramic micro electro mechanical systems (MEMS) is reported.  相似文献   

3.
Carbon–carbon (C–C) composites are ideal for use as aerospace vehicle structural materials; however, they lack high‐temperature oxidation resistance requiring environmental barrier coatings for application. Ultra high‐temperature ceramics (UHTCs) form oxides that inhibit oxygen diffusion at high temperature are candidate thermal protection system materials at temperatures >1600°C. Oxidation protection for C–C composites can be achieved by duplicating the self‐generating oxide chemistry of bulk UHTCs formed by a “composite effect” upon oxidation of ZrB2–SiC composite fillers. Dynamic Nonequilibrium Thermogravimetric Analysis (DNE‐TGA) is used to evaluate oxidation in situ mass changes, isothermally at 1600°C. Pure SiC‐based fillers are ineffective at protecting C–C from oxidation, whereas ZrB2–SiC filled C–C composites retain up to 90% initial mass. B2O3 in SiO2 scale reduces initial viscosity of self‐generating coating, allowing oxide layer to spread across C–C surface, forming a protective oxide layer. Formation of a ZrO2–SiO2 glass‐ceramic coating on C–C composite is believed to be responsible for enhanced oxidation protection. The glass‐ceramic coating compares to bulk monolithic ZrB2–SiC ceramic oxide scale formed during DNE‐TGA where a comparable glass‐ceramic chemistry and surface layer forms, limiting oxygen diffusion.  相似文献   

4.
《Ceramics International》2019,45(11):13865-13873
High-quality inorganic minerals are being increasingly consumed in the fabrication of ceramics. In the present work, desert sand was adopted as the source of SiO2 to synthesize MgSiO3 and MgSiO3SiC composite ceramics in an endeavor to economize on mineral resources and improve the desert ecosystem through the industrial application of desert sand. Experimental results show that the use of drift sand enabled the formation of glass phase at lower temperatures, which promoted protoenstatite transformation, prevented sintering cracking, and densified the ceramic bodies. The composites consisted of MgSiO3 (protoenstatite), SiC, glass phase, and small amounts of forsterite and SiO2. The addition of SiC particles caused the green bodies to resist densification, but this was improved by increasing the sintering temperature. The composite ceramic containing 30 wt % of SiC and sintered at 1350 °C had the highest bending strength, whereas that containing 50 wt% of SiC and sintered at 1400 °C had the highest hardness and the lowest coefficient of thermal expansion among all the samples.  相似文献   

5.
Polymer derived ceramics have been widely being explored as high temperature structural components in aerospace as rocket nozzles, nose tip and leading edges of reusable launch vehicles. Polycarbosilane (PCS) was modified by a condensation reaction with zirconium acetylacetonate [Zr(acac)4] to form polyzirconocarbosilane (PZrCS). A series of PZrCS were synthesized, which could be transformed into Si–Zr–C ceramic phases on pyrolysis. The ceramic yield of PCS was significantly improved by the introduction of zirconium into the system. The XRD patterns of the PZrCs show the characteristic peaks of ?SiC at 1300 °C and at 1500 °C the characteristic peaks of ZrC and ZrO2 were observed. The carbothermal reaction in PZrCS was completed at 1650 °C and the resulting ceramic was non-oxide SiC/ZrC phase. The SEM images proved that the increase in concentration of zirconium in the final ceramic decreases the surface uniformity. HRTEM analysis of PZrCS heat treated at 1650 °C shows the evolution of oxide free ZrC/SiC phase with compatible grain boundaries without stacking fault. It could be concluded that the technique of introducing ultra-high temperature ceramic phases into the SiC matrix is an effective approach to improve the high-temperature performance of silicon based ceramics.  相似文献   

6.
SiBCN, SiC and SiC-BN ceramics/composites were prepared by mechanical alloyed combined hot-pressing sintering at 1900 °C, and the oxidation kinetics of SiBCN, SiC and SiC-BN were calculated based on the thickness of oxide layers at 1100~1500 °C. The oxide layer can be divided into outer and inner parts under 1300 °C. At 1100 °C, the oxygen molecules diffused in SiC through the gaps in lattice, while diffused in SiBCN by substituting the O in SiO2. Moreover, BN(C) phase in SiBCN can slow down the generation rate of gases such as CO, N2, NO2 and B2O3.  相似文献   

7.
《Ceramics International》2022,48(18):25840-25848
SiAlC ceramics were prepared with a new polyaluminocarbosilane (PACS-N01) which was synthesized using methylaluminoxane (MAO) and liquid hyperbranched polycarbosilane (LPCS), and had a quite high ceramic yield (around 82.7%) at 900 °C in argon after curing. The obtained SiAlC ceramics consisted of β-SiC as major building units, small amounts of α-SiC and Al-containing phases with Al–O and Al–C bonds, and stayed partially amorphous till 1600 °C. Oxidation behaviors of SiAlC ceramics and SiC ceramics prepared through the same procedure were studied in the air at 1200 °C for different times. Dense oxide scales free of pores were formed on the surface of both samples. Measurements of oxide scale thickness revealed that the oxidation followed parabolic reaction kinetics and that the oxidation rate constant was apparently smaller for SiAlC than that for SiC. Besides, –Al–O–Si– network structure could be formed in SiAlC's oxide scale, which was supposed to block the pathway of oxygen diffusion and thus lowered the oxidation rates.  相似文献   

8.
《Ceramics International》2023,49(1):691-697
High-temperature oxidation resistance is important for Si–C–B–N ceramic fibers when reinforcing ceramic matrix composites with superior reliability and faulting tolerance. At present, few studies have investigated on the high-temperature oxidation behavior of Si–C–B–N fibers, limiting their further applications. In this work, we analyzed the high-temperature oxidation process of Si–C–B–N ceramic fibers with SiC nanograins (SiBCN-SiCn fibers) at 1000–1500 °C in air. SiBCN-SiCn fibers stated to be oxidized at 1000 °C, with the formation of thin oxide layer. After oxidizing at 1300 °C, obvious oxide layer that mainly consisted of amorphous SiO2 could be detected. Further oxidizing at 1500 °C caused the thickness increment of oxide layer, which could inhibit the oxidation products (CO, N2) to release away from the fibers. The remained CO and N2 may react with SiC nanograins to form SiO2 and graphite-like g-C3N4, causing the formation of additional transition layer. Our finding may support useful information for the applications of SiBCN-SiCn fibers under harsh environment.  相似文献   

9.
Organic-carbon-precursor-added B4C and B4C–SiC ceramics were subjected to pressureless sintering at various temperatures. The carbon precursor increased the densification of the B4C and B4C–SiC ceramics sintered at 2200 °C to 95.6 % and 99.1 % theoretical density (T.D.), respectively. The pyrolytic carbon content of the B4C–SiC composite decreased with increasing SiC content. The graphitization degree of pyrolytic carbon decreased slightly with the amount of carbon precursor and content of SiC. The 95 wt. % B4C–5 wt. % SiC composite added with 7.5 wt. % carbon precursor and sintered at 2200 °C outperformed the other B4C–SiC composites, and its sintered density, flexural strength, Young’s modulus, and microhardness were 98.6 % T.D., 879 MPa, 415 GPa, and 28.5 GPa, respectively. These values were higher than those of composites prepared via pressureless sintering and comparable to those of composites fabricated via hot pressing and/or using metal or oxide additives.  相似文献   

10.
Several boron-containing organosilicon polymers were synthesized from a sodium-coupling reaction of silicon and boron halides with and without alkyl halide in hydrocarbon solvents. The B–Si preceramic polymers were characterized using techniques such as IR, UV, and NMR spectrometry, gel permeation chromatography, elemental analysis, molecular weight measurement, and thermal analyses (TGA, DSC, DTA, and TMA). The chemical structures of the preceramic polymers were postulated based on the analytical results. Black ceramic materials were obtained from the precursor polymers upon thermal degradation at temperatures above 1000°C in an inert atmosphere. The precursor polymers had a ceramic yield of up to 70%. Thermogravimetric analysis of the ceramic material in air at a flow rate of 100 mL/min showed it was stable up to 1000°C with little weight gain or loss. Several methods were used to characterize the ceramic materials: XRD, solid NMR, high-temperature DTA, elemental analysis, and acid digestion. The analyses indicated that the ceramic materials comprised a mixture of silicon carbide (SiC), silicon borides (SiB4, SiB6), and amorphous Si–B–C ceramics, with small amounts of silica and free silicon.  相似文献   

11.
This paper reports the joining of liquid-phase sintered SiC ceramics using a thin SiC tape with the same composition as base SiC material. The base SiC ceramics were fabricated by hot pressing of submicron SiC powders with 4 wt% Al2O3–Y2O3–MgO additives. The base SiC ceramics were joined by hot-pressing at 1800-1900°C under a pressure of 10 or 20 MPa in an argon atmosphere. The effects of sintering temperature and pressure were examined carefully in terms of microstructure and strength of the joined samples. The flexural strength of the SiC ceramic which was joined at 1850°C under 20 MPa, was 343 ± 53 MPa, higher than the SiC material (289 ± 53 MPa). The joined SiC ceramics showed no residual stress built up near the joining layer, which was evidenced by indentation cracks with almost the same lengths in four directions.  相似文献   

12.
Chemical vapor infiltration and reaction (CVI-R) is used to produce biomorphic high porous SiC ceramics based on biological structures such as paper. The paper fibers are first converted into a biocarbon (Cb) template by a carbonization step. In a second step methyltrichlorosilane (MTS) in excess of hydrogen is infiltrated into the Cb-template by CVI technique, depositing a Si/SiC layer around each fiber. The reaction (R) between biocarbon and excess silicon to form additional silicon carbide occurs during a subsequent thermal treatment as a third step of the ceramization process. Due to the mild infiltration conditions (850–900 °C) the initial micro- and macrostructure of the carbon preform is retained in the final ceramics. The applied characterization methods after every step of the ceramization process are X-ray Photoelectron Spectroscopy (XPS), Raman spectroscopy, Thermal Gravimetric Analysis (TGA), and Scanning Electron Microscopy (SEM). The bending strength of the resulting porous ceramics is measured by the double ring bending test. It is found that a slight excess of free Si in relation to the amount of carbon from the Cb-template must be deposited in the Si/SiC layer to achieve a nearly complete conversion of the Cb-templates into SiC ceramic. The weight gain after infiltration has to be at least 400 wt.%. Varying the infiltration conditions such as temperature, MTS concentration and infiltration time, ceramics in a wide range of porosity (55–80%) and mechanical properties (5–40 MPa) can be produced. A thermal treatment temperature of 1400 °C is found to be optimal for the reaction between the deposited Si and the biocarbon.  相似文献   

13.
The tritium breeder and structural materials are necessary components in the blanket to realize tritium (T) self-sustainment of nuclear fusion. The long-term exposure between tritium breeders and structural materials will cause surface corrosion in irradiation environments and then further affect the tritium release behavior. In this study, chemical compatibility between Li2TiO3 ceramic pebbles and advanced structural materials was studied systematically at 700 °C for 300 h under He+0.1 % H2 environment, respectively. The color of the Li2TiO3 ceramic pebbles changes from white to dark grey and black. Moreover, the grain size of Li2TiO3 ceramic pebbles increases to more than 5 μm, and the crushing load decreased slightly. For the structural materials, the Al-rich oxide layer with about 188.7 nm of 14Cr-5Al oxide dispersion strengthened (ODS) steel and Cr-Fe rich oxide layer with about 1.04 μm of 14Cr-ODS steel were observed on the cross-section. The effective diffusion coefficient of O element in Li2TiO3 ceramic moved into ODS steel at 700 °C was calculated to be 3.3 × 10−16cm2/s and 1.02 × 10−14 cm2/s. Unfortunately, when SiC ceramics were contacted with the pebbles, the crystal phase transformed into SiO2, which severely limits its application. Therefore, these results will provide guidance for the selection of structural materials in the future.  相似文献   

14.
Precursor polycarbosilane containing acetylenic and Si? H group (PCAS) has been successfully prepared by the reaction of dilithioacetylene with methyl dichlorosilane, and characterized by gel permeation chromatography, Fourier transform infrared spectroscopy, 1H‐NMR, 13C‐NMR, and 29Si‐NMR. Thermogravimetric analysis curve in nitrogen showed the temperature of 5 wt % weight losses (Td5) was 613°C, while the ceramic yield of PCAS was 88% at 1000°C. Pyrolysis behavior and structure evolution of the cured PCAS were studied by means of X‐ray diffraction, Raman, scanning electron microscope‐energy dispersive X‐ray spectrometer, transmission electron microscope (selected area electron diffraction and high resolution transmission electron microscope), and elemental analysis. The polymer to ceramic conversion was completed at 1600°C and the results revealed that the ceramic consisted of β‐SiC and α‐SiC. The composition of the ceramic was near‐stoichiometric with molar ratio of Si/C (1.02 : 1) except rare and localized free carbon inclusions. The SiC ceramics exhibited high thermo‐oxidation resistance at elevated temperatures in air atmosphere. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41335.  相似文献   

15.
《Ceramics International》2020,46(4):4351-4357
A porous morph-genetic SiC/C ceramic material was fabricated using biomass-derived C template, Si powder, and Fe(NO3)3·9H2O as the starting materials. The effects of heating temperature, and catalyst/Si mole ratio on the formation of SiC/C ceramic were investigated. In addition, the pore size distribution was obtained through pore size analysis, and the determination of oxidation resistance of SiC/C ceramics and C template was carried out by thermogravimetric analysis. The results show that copious amounts of SiC nanowires, which were distributed on the surfaces and interiors of the C template holes, were formed at 1300 °C with 4 wt% Fe as catalyst. The SiC nanowires significantly affected the oxidation resistance and microporous structures of the prepared materials. Moreover, a possible formation mechanism for the porous SiC/C ceramic was determined.  相似文献   

16.
The laminated silicon carbide/boron nitride (SiC/BN) ceramics with different structural designs were fabricated by pressureless sintering at 1900?°C for 1?h in argon flow. The alumina (Al2O3)-and yttrium(III) oxide (Y2O3)-doped SiC ceramic exhibited a significant intergranular fracture behavior, which could be attributed to the yttrium aluminum garnet (YAG) phase located at the grains boundaries. The bending strength and fracture toughness were used to characterize the crack propagation including the delamination cracking, crack kinking, and crack deflection. The energy absorption in the process of crack propagation was characterized by the work of fracture (WOF) and damping capacity. The mode of crack propagation changed with the change in the structure and variation of BN content in the BN layer. The delamination cracks occurred inside the BN layer or at the interface between SiC and BN layers. The sample with a gradient structure exhibited the combination of delamination cracks occurring at the interface and inside the BN layer, which showed the maximum WOF of 2.43?KJ?m?2, bending strength of 300?MPa, and fracture toughness of 8.5?MPa?m1/2. The damping capacity varied with the change of the structure and the amplitude. The sample with a gradient structure exhibited the damping capacity of 0.088 and the maximum loss modulus of 9.758?GPa.  相似文献   

17.
In this paper, MoSi2, MoSi2-20?vol% (ZrB2-20?vol% SiC) and MoSi2-40?vol% (ZrB2-20?vol% SiC) ceramics were prepared using pressureless sintering. The oxidation behaviors of these MoSi2-(ZrB2-SiC) ceramics were investigated at 1600?°C for different soaking time of 60, 180 and 300?min, respectively. The oxidation behaviors of the MoSi2-(ZrB2-SiC) ceramics were studied through weight change test, oxide layer thickness measurement, and microstructure analysis. Further investigation of the oxidation behaviors of the MoSi2-(ZrB2-SiC) ceramics was conducted at a higher temperature of 1800?°C for 10?min. The microstructure evolution of the ceramics was also analyzed. It was finally found that the oxidation resistance of MoSi2 was improved by adding ZrB2-SiC additives, and the MoSi2-20?vol% (ZrB2-20?vol% SiC) ceramic exhibited the optimal oxidation resistance behavior at elevated temperatures. From this study, it is believe that it can give some fundamental understanding and promote the engineering application of MoSi2-based ceramics at high temperatures.  相似文献   

18.
Liquid phase sintered SiC ceramics were joined using magnesia-alumina-silica (MAS) glass-ceramic fillers without applied pressure. Four different filler compositions with 9.3–25.2 wt.% MgO, 20.7–33.6 wt.% Al2O3, and 49.2–68.1 wt.% SiO2 were studied. The effects of filler composition and joining temperature (1450–1600°C) on the joint strength were investigated. All compositions exhibited an optimum joining temperature at which the maximum joint strength was obtained. A low joining temperature resulted in poor wetting of the SiC substrate due to the high viscosity of the filler. Whereas a high joining temperature caused dewetting and large unfilled sections in the interlayer due to the deleterious interfacial reactions. The joint strength was inversely proportional to the interlayer thickness, which was a function of filler composition and joining temperature. The SiC ceramic joined at 1525°C with MgO-25 wt.% Al2O3-60 wt.% SiO2 filler exhibited a four-point bending strength of 286 ± 40 MPa.  相似文献   

19.
A heat-resistant SiC ceramic was developed from submicron β-SiC powders using a small amount (1 wt.%) of AlN–Lu2O3 additives at a molar ratio of 60:40. Observation of the ceramic using high-resolution transmission electron microscopy (HRTEM) showed a lack of amorphous films in both homophase (SiC–SiC) boundaries and junction areas. The junction phase consisted of Lu–Si–O elements, and the homophase boundaries contained Lu, Al, O, and N atoms as segregates. The ceramic maintained its room temperature (RT) strength up to 1600 °C. The flexural strength of the ceramic was 630 MPa and 633 MPa at RT and 1600 °C, respectively.  相似文献   

20.
The effect of chromium admixture on the processes in the HfB2-SiC ceramic powder system during its pressureless sintering at 1600?°C was studied. It was shown that an increase in chromium content from 0% to 15.5% in the HfB2-SiC ceramic powder mixture leads to a continuous increase in its relative density up to 90%. A transient liquid phase Cr-Si-C-B is formed at 1600?°C, and it promotes intense sintering of HfB2 and SiC powders. The oxidation resistance of HfB2-SiC-Cr ceramics was studied in static air at 1000–1500?°C. It was shown that the oxidation resistance is greatly improved due to a decrease in the porosity of the sintered ceramic system because of chromium additive. The presence of chromium oxide in the formed surface glassy layer can also lead to the increase in the oxidation resistance. These results suggest that chromium can be considered as a promising sintering additive for HfB2-SiC and similar systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号