共查询到20条相似文献,搜索用时 0 毫秒
1.
Canglong Li Wenqian Yang Shuangshuang Zheng Godfrey Okumu Barasa Pei Wang Kexin Zhou Chunxu Bai 《Journal of the American Ceramic Society》2023,106(8):4699-4708
Experiments for orthorhombic double perovskite Gd2Co0.5Mn1.5O6 revealed intrinsic effects of magnetic compensation characterized by M(Tcomp) = 0 at Tcomp = 20 K and negative magnetization depicted by M(T) < 0 under positive magnetic fields, which were experimentally investigated by different protocols of direct current magnetization measurements. Compared to Gd2CoMnO6, the excessive ratio of Mn in Gd2Co0.5Mn1.5O6 promotes the antisite disorder and preferably generates magnetic clusters owing to the intrinsic inhomogeneity. The clusters exhibit spin glass (SG) properties as demonstrated by alternating current susceptibility and aging measurements. A possible physical mechanism for evolution of the spin configuration with temperature is proposed. The effects of magnetic compensation and negative magnetization are attributed to the negative exchange coupling among the abundant ferromagnetic clusters. The additional pinning force provided by the cluster SG is an essential factor to prevent the flipping of the spins from aligning with the applied magnetic field. 相似文献
2.
Mei Ying Liu Tu Lai Sun Xiao Li Zhu Xiao Qiang Liu He Tian Xiang Ming Chen 《Journal of the American Ceramic Society》2021,104(12):6393-6403
Hexagonal rare-earth ferrites (h-RFeO3) have attracted much scientific attention due to their room-temperature multiferroicity. However, it is still a hard job to obtain h-RFeO3 bulk materials because of the meta-stability of such hexagonal phase, and the evaluation of room-temperature ferroelectric and magnetoelectric characteristics in such materials is also a challengeable issue. In the present work, Yb1−xInxFeO3 ceramics with the stable hexagonal structure were obtained by introducing chemical pressure, where the unique ferroelectric domain structures of sixfold vortex combined with tenfold vortex with a typical size of ~400 nm were determined. Symmetry of the present system evolved from centrosymmetric orthorhombic Pbnm (x = 0–0.4) to non-centrosymmetric hexagonal P63cm (x = 0.5 and 0.6) with a ferroelectric polarization up to 3.2 μC/cm2, and finally to centrosymmetric hexagonal P63/mmc (x = 0.7 and 0.8). The Curie point decreased monotonically from 723 K to a temperature below room temperature with increasing x, and the antiferromagnetic phase transition above room temperature was determined for all compositions. Meanwhile, a large linear magnetoelectric coefficient (αME) up to 0.96 mV/cm Oe was obtained at room temperature, and this indicated the great application potential for magnetoelectric devices. 相似文献
3.
Timmy Reimann Thomas Schmidt Jörg Töpfer 《Journal of the American Ceramic Society》2020,103(1):324-334
W-type ferrite is a member of the hexagonal ferrite family and a potential permanent magnet material. However, its synthesis conditions are not fully understood yet. Samples were sintered either at 1400°C in air and quenched, or at 1300°C at reduced oxygen partial pressure. The precise stability conditions of this W-type ferrite were investigated in the temperature range of 1200°C-1400°C using thermogravimetry, XRD, and electron microscopy. At 1300°C, the ferrite is stable at oxygen partial pressures of . At more oxidizing conditions, the ferrite decomposes into M-type ferrite and hematite, while at more reducing atmospheres Sr4Fe6O13 and magnetite are formed. The nonstoichiometry δ of SrFe18−δO27 was derived from thermal analysis data at 1300°C as function of oxygen partial pressure and was found to be mainly due to cation vacancies. Magnetization measurements show that this W-type ferrite exhibits Ms = 103 emu/g at T = 4 K, which agrees well with a ferrimagnetic spin arrangement according to Gorter's model. As alternative, Zn-substituted W-ferrite was found to be stable in air at 1200°C with a large Ms = 123 emu/g at 4 K. 相似文献
4.
管道周向励磁漏磁检测磁路设计 总被引:1,自引:1,他引:1
管道周向励磁漏磁检测技术是一种新的检测方法,对于检测和定量评定轴向导向缺陷具有潜在优势。磁化器磁路设计是漏磁检测需要解决的首要问题,采用磁路计算原理研究管道磁化磁路中永磁体长度、厚度和宽度改变时,管道表面缺陷产生的漏磁场的变化情况,得到了缺陷漏磁场随永磁体长度、厚度和宽度改变时的变化规律。此规律有助于从整体上把握永磁体磁路设计,改善磁化效果,提高漏磁检测灵敏度,进而为漏磁检测磁路的设计提供依据。 相似文献
5.
6.
7.
《Ceramics International》2023,49(2):2506-2514
SmCr0.85Mn0.15O3 (SCMO) nanoparticles with Pnma space group have been synthesized by the sol-gel auto-combustion method with an average crystallite size of 70 nm. The structural analysis indicates a comparable unit cell volume with that of the bulk compound. The structural distortion is calculated by various factors such as cell distortion factor, octahedral distortion, dodecahedral distortion, strain and tolerance factor, which arise due to the Jahn-Teller (JT) effect and a tilting in the octahedra. The obtained distortion values suggest a larger distortion in the structure due to the nano-size effect compared with the bulk counterpart. The diffuse reflectance spectrum confirms the semiconducting nature of SCMO nanoparticles with an optical bandgap of 2.9 eV, higher than that of the bulk compound. The extinction coefficient of the SCMO nanoparticles exhibits a larger value than that of the bulk, suggesting a higher absorbing character of the nanoparticles. The temperature-dependent magnetization reveals a decrease in the Néel temperature on Mn substitution. The negative magnetization is also observed below the compensation temperature, Tcomp. Moreover, a stable magnetic switching behavior is demonstrated by varying temperatures under ZFC and FC protocols. The semiconducting nature and the stable magnetic switching behavior of SCMO nanoparticles make them suitable for optoelectronic, photovoltaic, and magnetic switching applications. 相似文献
8.
利用固相反应法制备了多晶SrRuO3固体。利用X射线衍射确定样品的相结构为正交畸变钙钛矿结构,空间群为Pbnm。利用最小二乘法求得晶格常数为a=0.5548nm,b=0.5551nm,c=0.7830nm。利用物理性质测量系统(PPMS)测量样品在不同偏磁场下的交流磁化率、零场冷却(ZFC)和加场冷却(FC)磁化强度随温度的变化规律,对此规律给出了合理解释。 相似文献
9.
10.
11.
12.
13.
Maxim V. Grigoriev Leonid A. Solovyov Anna V. Ruseikina Aleksandr S. Aleksandrovsky Vladimir A. Chernyshev Dmitriy A. Velikanov Alexander A. Garmonov Maxim S. Molokeev Aleksandr S. Oreshonkov Nikolay P. Shestakov Alexey V. Matigorov Svetlana S. Volkova Evgeniy A. Ostapchuk Alexander V. Kertman Thomas Schleid Damir A. Safin 《International journal of molecular sciences》2022,23(3)
In this work, we report on the synthesis, in-depth crystal structure studies as well as optical and magnetic properties of newly synthesized heterometallic quaternary selenides of the Eu+2Ln+3Cu+1Se3 composition. Crystal structures of the obtained compounds were refined by the derivative difference minimization (DDM) method from the powder X-ray diffraction data. The structures are found to belong to orthorhombic space groups Pnma (structure type Ba2MnS3 for EuLaCuSe3 and structure type Eu2CuS3 for EuLnCuSe3, where Ln = Sm, Gd, Tb, Dy, Ho and Y) and Cmcm (structure type KZrCuS3 for EuLnCuSe3, where Ln = Tm, Yb and Lu). Space groups Pnma and Cmcm were delimited based on the tolerance factor t’, and vibrational spectroscopy additionally confirmed the formation of three structural types. With a decrease in the ionic radius of Ln3+ in the reported structures, the distortion of the (LnCuSe3) layers decreases, and a gradual formation of the more symmetric structure occurs in the sequence Ba2MnS3 → Eu2CuS3 → KZrCuS3. According to magnetic studies, compounds EuLnCuSe3 (Ln = Tb, Dy, Ho and Tm) each exhibit ferrimagnetic properties with transition temperatures ranging from 4.7 to 6.3 K. A negative magnetization effect is observed for compound EuHoCuSe3 at temperatures below 4.8 K. The magnetic properties of the discussed selenides and isostructural sulfides were compared. The direct optical band gaps for EuLnCuSe3, subtracted from the corresponding diffuse reflectance spectra, were found to be 1.87–2.09 eV. Deviation between experimental and calculated band gaps is ascribed to lower d states of Eu2+ in the crystal field of EuLnCuSe3, while anomalous narrowing of the band gap of EuYbCuSe3 is explained by the low-lying charge-transfer state. Ab initio calculations of the crystal structures, elastic properties and phonon spectra of the reported compounds were performed. 相似文献
14.
Hexagonal M-type ferrites with a nominal composition SrFe12O19 (SrM) were prepared via a ceramic route using acicular goethite (α-FeOOH) nanopowders obtained at different hydrothermal temperature as one of the starting materials, and their structural and magnetic properties were investigated. The best hydrothermal temperature of α-FeOOH used was found to be 1ower than 180?°C, and the best sintering temperature of SrM should be 1200?°C. The highest saturation magnetization of SrM reaches 76.7?emu/g, a very high value rarely found in the SrM ferrites without any substitution or dopant. 相似文献
15.
Xiaoxia Lin Jianlin Wang Zhengping Fu Qiuping Huang Yalin Lu 《Journal of the American Ceramic Society》2021,104(9):4679-4686
GaFeO3-type iron oxide is a promising room-temperature multiferroic material due to its large magnetization and polarization. To expand the scope of its application, it is crucial to control the magnetic properties. Based on introducing the ferromagnetic (FM) Fe3O4 in the antiferromagnetic (AFM) GaFeO3 to build the FM-AFM interface by changing the Ga/Fe ratio, Ga0.69Fe1.31O3 (GFO) was successfully grown by the floating zone method. The resulting sample was characterized by X-ray diffraction (XRD), and its magnetic properties were measured using a superconducting quantum interference device (SQUID). The temperature-dependent AC susceptibility measurement shows that the spin glass-like behavior of GFO at temperatures close to 50 K is a manifestation of the geometrical frustration arising from cation site disorder. In addition, the magnetic property measurement shows that the magnetic transition temperature Tc is at 650 K, which is introduced by Fe3O4 and suppresses the ferromagnetic transition around 320 K of GFO. Interestingly, the observed exchange bias effect, which does not exist in the bulk GaFeO3-type family, is attributed to the formation of an FM/AFM interface due to the existence of FM Fe3O4 in the GFO. This study provides a new perspective on the properties of the GaFeO3-type family for potential applications in spintronic devices. 相似文献
16.
在平行磁场作用下电沉积Co-Ni-Mn-P磁性薄膜。研究了平行磁场对电沉积过程及薄膜性能的影响。研究发现:施加平行磁场,有利于提高离子的传质速率,从而提高沉积效率。平行磁场作用下电沉积制备的Co-Ni-Mn-P磁性薄膜呈现出"枝晶状"结构,矫顽力和比饱和磁化强度更高。 相似文献
17.
《国际聚合物材料杂志》2012,61(3):327-338
A sample of Ni0.25Co0.25Zn0.5Fe2O4 ferrite was prepared by a double-staged sintering method in air. Thermoplastic natural rubber (TPNR) was prepared by melt blending of natural rubber (NR), liquid natural rubber (LNR), and high density polyethylene (HDPE) in an internal mixer Brabender Plasticorder PL 2000. Magnetic polymer composites were prepared from the ferrite and TPNR matrix using the same melt blending method at 135°C with mixing rate of 50 r.p.m. for 12 min. The fillers were varied from 5 to 30 weight percent. A uniform dispersion of the filler in the matrix was confirmed by thermogravimetric analysis (TGA). The density of the composites was determined using densitometer MD 200S. Magnetic properties were studied using a vibrating sample magnetometer (VSM) at room temperature (25°C). The results show that magnetization (M), saturation magnetization (MS), remanent magnetization (MR), initial susceptibility (χi) and initial permeability (μi) increase with increasing filler content at all compositions. The composites can be classified as soft magnetic materials as their coercivities are in the range of 30–36 Oe. The differential scanning calorimetric (DSC) results indicate that the glass transition temperature (Tg) and the melting point (Tm) of all the composites are independent of the filler content. The thermal conductivity of the composites was found to be in the range of 0.26 to 0.52 W m?1 K?1. 相似文献
18.
C.L. Li T.Y. Yan G.O. Barasa Y.H. Li R. Zhang Q.S. Fu X.H. Chen S.L. Yuan 《Ceramics International》2018,44(13):15446-15452
Polycrystalline ceramics of Co(Cr1-xFex)2O4 (0?≤?x?≤?0.12) were experimentally studied based on a series of temperature and time-dependent dc magnetic measurements using different magnetic field histories. Magnetization in field cooling process was continuously decreased for doping content x in the range of 0?≤?x?≤?0.04. Remarkable negative magnetization is observed when x reaches to 0.06 and persists up to x?=?0.1. Two-sublattice model is established and competition of the two magnetic sublattices is responsible for the phenomenon. The magnetic switching effect is realized just by changing the magnitude of the applied magnetic field and double magnetocaloric effects are obtained. These unique features under low magnetic fields show attractive for application in spintronic devices due to that the magnetic state can effectively be tuned through magnetic field or temperature. Besides, the system exhibits both positive and negative exchange bias fields which are considered to be originating from the unidirectional anisotropy of exchange coupling of antiferromagnetic/ferromagnetic phases and spin reorientation of the two sublattices magnetic moments, respectively. 相似文献
19.
采用高能球磨法制备Fe3 O4纳米磁性颗粒,用XRD、VSM、SEM等方法对样品进行表征并用四端法对样品的电导率进行测量,然后对样品的结构性能作定性和定量分析.结果表明:随着研磨时间增加,Fe3O4晶粒的衍射峰变宽,衍射峰强度减弱,同时有少量α-Fe2 O3生成;晶格的显微应变增加;Fe3 O4磁性颗粒的饱和磁化强度降低,矫顽力先变大后减小;对压片后样品的电导率进行测试,发现电导率降低;随着研磨时间增加,晶粒会出现团聚现象,形成粒径更大的二次颗粒,为防止该现象,研磨时间应控制在110 h左右. 相似文献
20.
S. Divyalakshmi I. B. Shameem Banu R. Rajesh 《International Journal of Applied Ceramic Technology》2023,20(3):1939-1952
The present work unveiled the distortion of oxygen octahedra influencing magnetic and magnetoelectric properties of novel Bi1−xErxFe1−yZryO3 (x = 0, .05, .1, y = .02, .05) polycrystalline nanoparticles by sol–gel route. X-ray diffraction patterns analysis reveals that pristine BiFeO3 and doped BiFeO3 are crystalized in the rhombohedral structure (R3c). The Fe–O–Fe bond angle of Bi1−xErxFe1−yZryO3 (x = 0, .05, .1, y = .02, .05) varies between 141° and 159.62° as the concentration of Er (via Bi site) and Zr (via Fe site) ions increases in BiFeO3. As a result, the tilt angle of oxygen octahedra and the canting angle of spiral spin arrangement increase. Hence, the maximum magnetization varies between .03144 and .37558 emu/g in Er and Zr co-doped BiFeO3 system. The number of electrons per unit cell of Bi1−xErxFe1−yZryO3 (x = 0, .05, .1, y = .02, .05) lies between 733.38 and 831, respectively. Further, the number of coherently diffracting domains increases from 3.07 to 5.21, and then it decreases when Er and Zr are increased in BiFeO3. Consequently, the magnetoelectric coupling coefficient varies between .0265 and .2511 mV/cm Oe, respectively. Particularly, Bi0.95Er0.05Fe0.98Zr0.02O3 shows enhanced magnetic and magnetoelectric behaviors compared to other samples. 相似文献