首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
La2O3–Ga2O3M2O5 (M = Nb or Ta) ternary glasses were fabricated using an aerodynamic levitation technique, and their glass‐forming regions and thermal and optical properties were investigated. Incorporation of adequate amounts of Nb2O5 and Ta2O5 drastically improved the thermal stabilities of the glasses against crystallization. Optical transmittance measurements revealed that all the glasses were transparent over a wide wavelength range from the ultraviolet to the mid‐infrared. The refractive indices of the glasses increased and the Abbe number decreased upon substituting Ga2O3 with Nb2O5, and the decrease in the Abbe number was significantly suppressed when Ta2O5 was incorporated into the glass. As a result, excellent compatibility between high refractive index and lower wavelength dispersion was realized in La2O3–Ga2O3–Ta2O5 glasses. Analysis based on the single‐oscillator Drude–Voigt model provided more systematical information and revealed that this compatibility was due to an increase in the electron density of the glass.  相似文献   

2.
The glass-forming region of a BaO-La2O3-Ga2O3 ternary system was confirmed and BaF2-BaO-La2O3-Ga2O3 new oxyfluoride glasses were prepared by a containerless processing. We also analyzed the physical, thermal, and optical properties of new oxide and oxyfluoride glasses. The direct effects of the substitution of oxygen by fluorine and the effect of BaO and La2O3 on the refractive index and Abbe number were discussed on the basis of electronic polarizability and resonance wavelength of oscillator. The refractive indices increased with increasing La2O3 concentration because La2O3 increased the electronic polarizabilities. Abbe number increased with increasing BaO and fluorine concentration because of the decrease in resonance wavelength of oscillator. By the combination of the BaO, La2O3, and fluorine in the gallate glass system, we could obtain novel oxide and oxyfluoride glasses with high refractive index (1.81-1.95) and high Abbe number (31-55). The absorption edge in UV region shifted to the shorter wavelength and IR cut-off wavelength shifted to the longer wavelength with increasing fluorine. Therefore, wide transparent glass was obtained from 262 nm to 11.3 μm.  相似文献   

3.
Oxyfluoride glasses of xLaF3–(60 − x)LaO3/2–40NbO5/2 (x = 0, 5, 10, 35) and xLaF3–(60 − x)LaO3/2–30NbO5/2–10AlO3/2 (x = 0, 10, 20, 30) were prepared using a levitation technique. Both the glass-transition temperature, Tg, and onset crystallization temperature, Tc, were lowered by substituting a part of the oxygen with fluorine in the glasses. An appropriate amount of fluorine maximized the difference between the temperatures, ΔT (= Tc − Tg), indicating the improvement in the glass-forming ability. The atomic packing densities of the glasses were approximately 60%, which gradually increased with the fluorine content. The absorption edge of the glasses shifted toward the shorter wavelength region in the ultraviolet spectra and toward the longer region in the infrared spectra by fluorine substitution. In addition, in one of the oxyfluoride glasses, a wide transparency from 307 nm to 9.2 µm was realized. Furthermore, the glass exhibited superior optical properties, with a combination of a high refractive index, nd, of 2.020 and low wavelength dispersion, vd, of 30.1. The effect of fluorine substitution on the nd and its vd was analyzed using the Lorentz–Lorenz dispersion formula.  相似文献   

4.
The third-order nonlinear optical susceptibilities, X(3), of TeO2-based glasses containing transition metal oxides (M = Sc2O3, TiO2, V2O5, Nb2O5, MoO3, Ta2O5, and WO3) glasses have been measured by the third harmonic generation (THG) method in order to investigate the effect of the empty d-orbital contributions to the third-order nonlinear optical susceptibilities. It is found that the addition of TiO2, Nb2O5, and WO3 to TeO2 glass increases the X(3) value as well as the refractive index, while others decrease both of them. The positive effect of the TiO2, Nb2O5, or WO3, on the X(3) of TeO2 glass was interpreted in terms of the cationic empty d-orbital contribution. There is an almost linear relation between the X(3) and the term (n2ω+ 2)3.(n2ω -1).Ed/E20 containing three measurable parameters only, irrespective of the kinds of MO, which was derived based on the bond orbital theory developed by M. E. Lines. The largest X(3) value obtained is 1.69 × 10−12 esu for 30NbO2.5.70TeO2 glass, about 60 times larger than that of pure fused silica glass.  相似文献   

5.
6.
High refractive index glasses with nominal composition of 0.35La2O3–(0.65?x)Nb2O5xTa2O5 (x ≤ 0.35) were prepared by aerodynamic levitation method. The effect of Ta2O5 substituting on their thermal and optical properties was investigated. All the glasses obtained were colorless and transparent. Differential thermal analyzer results show that as the content of Ta2O5 increased, the thermal stability of the glasses increased but the glass‐forming ability decreased. The transmittance spectra of all the obtained glasses exhibited a wide transmittance window ranging from 380 to 5500 nm. As the content of Ta2O5 increased, the refractive index of the glasses was enhanced from 2.15 to 2.21 and the dispersion was reduced with the Abbe number increasing from 20 to 27.  相似文献   

7.
Sodium aluminophosphate glasses were evaluated for their bone repair ability. The glasses belonging to the system 45Na2O–xAl2O3‐(55‐x)P2O5, with = (3, 5, 7, 10 mol%) were prepared by a melt‐quenching method. We assessed the effect of Al2O3 content on the properties of Na2O–Al2O3–P2O5 (NAP) glasses, which were characterized by density measurements, DSC analyses, solubility, bioactivity in simulated body fluid and cytocompatibility with MG‐63 cells. To the best of our knowledge, this is the first investigation of calcium‐free Na2O–Al2O3–P2O5 system glasses as bioactive materials for bone tissue engineering.  相似文献   

8.
Glasses in the 30La2O3-40TiO2-30Nb2O5 system are known to have excellent optical properties such as refractive indices over 2.25 and wide transmittance within the visible to mid-infrared (MIR) region. However, titanoniobate glasses also tend to crystallize easily, significantly limiting their applications in optical glasses due to processing challenges. Therefore, the 30La2O3-40TiO2-(30−x) Nb2O5-xAl2O3 (LTNA) glass system was successfully synthesized using a aerodynamic containerless technique, which improves glass thermal stability and expands the glass-forming region. The effects of Al2O3 on the structure, thermal, and optical properties of base composition glasses were investigated by XRD, DSC, NMR, Raman spectroscopy, and optical measurements. DSC results indicated that as the content of Al2O3 increased, the thermal stability of the glasses and glass-forming ability increased, as the 30La2O3-40TiO2-25Nb2O5-5Al2O3 (Nb-Al-5) glass obtained the highest ΔT value (103.5°C). Structural analysis indicates that the proportion of [AlO4] units increases gradually and participates in the glass network structure to increase connectivity, promoting more oxygen to become bridging oxygen and form [AlO4] tetrahedral linkages to [TiO5] and [NbO6] groups. The refractive index values of amorphous glasses remained above 2.1 upon Al2O3 substitution, and a transmittance exceeding 65% in the visible and mid-infrared range. The crystallization activation energies of 30La2O3-40TiO2-30Nb2O5 (Nb-Al-0) and Nb-Al-5 glasses were calculated to be 611.7 and 561.4 kJ/mol, and the Avrami parameters are 5.28 and 4.96, respectively. These results are useful to design new optical glass with good thermal stability, high refractive index and low wavelength dispersion for optical applications such as lenses, endoscopes, mini size lasers, and optical couplers.  相似文献   

9.
The spectral, optical, physicochemical, radiative, and radiation-shielding properties of glasses in the PbO-P2O5-R m O n system (where R m O n stands for Group I–V element oxides) are investigated as a function of their composition. The composition of a colorless radiation-resistant high-lead glass suitable for production on a semicommercial scale is determined. The properties and optical quality parameters of the glass are studied. The new phosphate glass is a lead metaphosphate containing aluminum, alkali, and alkaline-earth oxides. This glass is resistant to radiation at doses up to 107 R and has an optical transmission edge at 360 nm. The coefficient of absorption of gamma radiation for the new glass is larger than those of dense silicate flints. According to the optical parameters, the new glass lies between dense flints and dense barium flints in the Abbe diagram and compensates for the absence of the latter flints in catalogues of radiation-resistant glasses.  相似文献   

10.
Glasses in the (100 − x)(0.5PbO · 0.5P2O5) · xTeO2 section of the PbO-P2O5-TeO2 system have been synthesized over the entire composition range for the first time and their properties (Raman spectra, refractive index n, density d, glass transition temperature T g , and light scattering losses) have been investigated. It has been demonstrated that the Raman spectra can be represented as a superposition of constant spectral forms corresponding to constant stoichiometry groupings PbO · P2O5, TeO2 · 2PbO · 2P2O5, TeO2 · PbO · P2O5, 2TeO2 · PbO · P2O5, and TeO2. The existence of crystals of the corresponding stoichiometry has been predicted using the constant stoichiometry grouping concept. The diagram of the constant stoichiometry grouping contents (determined from the Raman spectra) in glasses of the system under investigation has made it possible to determine the partial properties of constant stoichiometry groupings, to calculate the dependences of the refractive index and density on the composition, and to refine the values of n and d for vitreous tellurium dioxide and lead metaphosphate. The practical importance of glasses in the system under consideration for the use in photonic devices has been discussed.  相似文献   

11.
Engineering new glass compositions have experienced a sturdy tendency to move forward from (educated) trial-and-error to data- and simulation-driven strategies. In this work, we developed a computer program that combines data-driven predictive models (in this case, neural networks) with a genetic algorithm to design glass compositions with desired combinations of properties. First, we induced predictive models for the glass transition temperature (Tg) using a dataset of 45,302 compositions with 39 different chemical elements, and for the refractive index (nd) using a dataset of 41,225 compositions with 38 different chemical elements. Then, we searched for relevant glass compositions using a genetic algorithm informed by a design trend of glasses having high nd (1.7 or more) and low Tg (500 °C or less). Two candidate compositions suggested by the combined algorithms were selected and produced in the laboratory. These compositions are significantly different from those in the datasets used to induce the predictive models, showing that the used method is indeed capable of exploration. Both glasses met the constraints of the work, which supports the proposed framework. Therefore, this new tool can be immediately used for accelerating the design of new glasses. These results are a stepping stone in the pathway of machine learning-guided design of novel glasses.  相似文献   

12.
The high refractive index La2O3–TiO2–Nb2O5 glasses were prepared by containerless processing, and the glass‐forming region was determined. The refractive index showed the range from 2.20 to 2.32, and the values were much higher than those of most optical glasses. The completely miscible 30LaO3/2–(70?x)TiO2xNbO5/2 (0 ≤ ≤70) system was fabricated to study the compositional dependence of refractive index and optical transmittance. The crucial determinants of the refractive index of oxide glasses, oxygen molar volume, and electronic polarizability of oxygen ions were calculated. The principle of additivity of glass properties was suitable for the calculation of refractive index between glass and compositional oxides. All the glasses were colorless and transparent in the visible to 6.5 μm middle infrared (MIR) region. These results are useful for designing new optical glasses with high refractive index and low wavelength dispersion in wide optical window.  相似文献   

13.
Niobium alkali germanate glasses were synthesized by the melt‐quenching technique. The ternary system (90‐x)GeO2xNb2O5–10K2O forms homogeneous glasses with x ranging from 0 to 20 mol%. Samples were investigated by DSC and XRD analysis, FTIR and Raman spectroscopy, and optical absorption. Structural and physical features are discussed in terms of Nb2O5 content. The niobium content increase in the glass network strongly modifies the thermal, structural and optical properties of alkali germanate glasses. DSC, Raman and FTIR analysis suggest niobium addition promotes NbO6 groups insertion close to GeO4 units of the glass network. XRD analysis also pointed out that samples containing high niobium oxide contents exhibit preferential niobium oxide‐rich phase after crystallization after heat treatment, which is similar to orthorhombic Nb2O5. Absorption spectra revealed high transmission range between 400 nm to 6.2 μm, added to a considerably decreased hydroxyl group content as the addition of niobium in the alkali germanate network. The niobium oxide‐rich phase crystallization process was studied and activation energy was determined, as well as nucleation and crystal growth temperatures and time for obtaining transparent glass‐ceramics.  相似文献   

14.
Six different lithium bismuth boro-tungstate glasses with chemical composition 20Li2O-(20-x)Bi2O3-xWO3-60B2O3 (x = 0, 1, 2, 3, 4 and 5 mol%) were produced by the quenching method. Then, the glasses were investigated by means of their optical, mechanical, chemical durability and gamma ray shielding properties. Measured values of density and ultrasonic velocities were used to determine the elastic properties of the glasses. The optical band gap determined using the absorbance spectrum fitting (ASF) model was found to decrease under Bi2O3/WO3 substitution. The presence of BO3, BO4, BiO6, and WO4 structural groups in the glasses was confirmed by Fourier transform infrared spectroscopy (FTIR). The dissolution rate in the glass 20Li2O–15Bi2O3–5WO3–60B2O3 (LBWB5) was found to be 10 times lower than 20Li2O-20Bi2O3– 60B2O3. Mass attenuation coefficients (MAC) values of the produced glasses were determined using the MCNPX Monte Carlo code and Phy-X/PSD program. The photon attenuation parameters such as half value layer (HVL), mean free path (MFP), effective atomic number (Zeff), exposure buildup factor (EBF) and energy absorption buildup factor (EABF) were also studied. The obtained results showed that Bi2O3/WO3 substitution has a direct impact on the photon attenuation abilities of produced glasses. More specifically, HVL values increased from 0.252 × 10?2 cm for LBWB0 glass to 0.275 × 10?2 cm for LBWB5 glass. However, different trends were observed for the photon buildup factors for the produced glasses. It can be concluded that the produced glasses have promising structural, optical, and photon attenuation properties to be used for gamma shielding applications.  相似文献   

15.
《Ceramics International》2022,48(5):6780-6791
This study aimed to fabricate six different Copper(II) oxide reinforced Calcium-Borate glasses with different types of substitutions such as Al2O3/V2O5, BaO2/V2O5, and ZnO/V2O5. Accordingly, a depth characterization process has been performed for ACV, BCV and ZCV glasses with a nominal composition of 55B2O3–35CaO–9Al2O3-0.5CuO-0.5V2O5, 55B2O3–35CaO-8.5Al2O3-0.5CuO–1V2O5, 55B2O3–35CaO–9BaO2-0.5CuO-0.5V2O5, 55B2O3–35CaO-8.5BaO2-0.5CuO–1V2O5, 55B2O3–35CaO–9ZnO-0.5CuO-0.5V2O5, 55B2O3–35CaO-8.5ZnO-0.5CuO–1V2O5. Optical, structural, physical, and experimental neutron/gamma shielding properties of synthesized glasses were determined, respectively. Experiments measuring neutron exposure indicated how well glass samples attenuated fast neutrons. The RADACS software was used to record data from a BF3 gas proportional detector from the Canberra NP-100B series and a 241Am/Be neutron source with a 10 mCi activity. The absorption edge belonging to the samples are found between 420 nm and 480 nm. Our findings showed that the optical band gaps for the samples ranged from 1.179 to 2.022 eV. The wavenumber range of 400–1600 cm-1 was evaluated for the resulting peaks. The region with the highest band formation was approximately 760–1170 cm-1. While BCV0.5 and BCV1 glasses with 9% and 8.5% BaO2 insertion have the largest MAC values ranging between 2.255–0.076 and 2.156–0.076 cm2/g, the lowest MAC values varying between 0.361–0.0761 and 0.366–0.076 cm2/g belong to ACV0.5 and ACV1 glasses with 9% and 8.5% Al2O3 addition. Our results showed that the BCV glass family has superior material properties among the fabricated glasses. It can be concluded that BaO2/V2O5 glasses may be used in replacement of Copper(II) oxide glasses to provide monotonic behavior on crucial characteristics while maintaining the greatest density increase for large gamma ray shielding properties.  相似文献   

16.
《Ceramics International》2021,47(21):30137-30146
Tellurite glass is a model material having superior features for several applications. It can be considered as a potential host matrix for different oxides, and this paper aims to study the effects of TeO2/B2O3 substitution on synthesis, physical, optical and radiation shielding properties of ZnO–Li2O-GeO2-Bi2O3 glasses produced by melt quenching technique. The physical and optical features of the fabricated glasses were experimentally investigated by determining pivotal parameters such as density, XRD, tellurium ion concentration (Ni), linear refractive index (no), polaron radius (rp) and inter nuclear distance (ri). Moreover, the relative radiation deposition within the glasses was assessed via the attenuation coefficients (e.g. MAC), specific gamma ray constant (ᴦ), total stopping power (TSP), neutron cross sections, and dose rate (D). Our results suggest that both TeO2 and B2O3 additives have a significant effect on the fundamental properties of the ZnO–Li2O-GeO2-Bi2O3 glasses. It also found that the lower thicknesses of the present glasses are required to provide the same level of shielding than ordinary, ilmenite, steel scrap, hematic-serpentine, ilmenite-limonite and basalt-magnetite concretes, RS253-G18 and RS360 glass shields. Therefore, presently investigated glasses are promising photon shields in different technological applications of gamma- and x-rays.  相似文献   

17.
Optical glasses with high indices of refraction and Abbe values are very desirable for wide angle lenses. In order to determine the range of compositions in which glasses of this type could be produced, oxides of lithium, beryllium, calcium, boron, lanthanum, or thorium were substituted for barium oxide or silica in a three-or-four component base glass. Substitutions were made on a mole-for-mole basis. The indices of refraction for the C, D, F, and G lines and the liquidus were determined for each glass. Experimental glasses with indices of refraction (nD) and Abbe values from 1.600 to 1.714 and 62.2 to 52.7, respectively, were made in small platinum crucibles.  相似文献   

18.
The properties of silicate glasses and melts containing magnesium are analyzed in comparison with the properties of glasses and melts in which magnesium is replaced by aluminum. In particular, the properties of the glass and the melt of the diopside composition CaMgSi2O6 are analyzed in comparison with the properties of the glass and the melt of the anorthite composition CaAl2Si2O8. It is demonstrated that the properties of aluminosilicate and magnesium silicate glasses and melts differ not so strongly as should be expected upon replacement of modifier ions by network-former ions. By using the parameters γ n characterizing the cation field strength, it is shown that Mg2+ cations can fulfill both the function of network formers like Al3+ cations and the function of modifiers like Ca2+ cations. The degree of depolymerization of the glass and the melt of the composition CaMgSi2O6 is estimated to be 0.4–0.5 from the dependences of the change in the relative density (dd 0)/d at different pressures on the degree of depolymerization NBO/T (the ratio of the number of nonbridging oxygen atoms to the number of network-former cations) for silicate glasses and the dependence of the isothermal bulk modulus K t on the quantity NBO/T for silicate melts.  相似文献   

19.
Alkali‐free glasses have attracted tremendous attentions for their high glass transition temperature (Tg). Such a feature broadens their potential applications, especially in the area of high‐density and high‐power laser glasses. BaO–P2O5 glasses, as one of the major matrix materials due to its high‐Tg, can be applied in high‐power laser glasses. Introducing SiO2 is an effective method to improve the thermal, refractive index, and mechanical properties of phosphate glasses. Herein, we studied the barium silicophosphate glasses with MAS NMR and the Tg was successfully calculated by the topological constraint theory. The designed glass (20BaO–26.7SiO2–53.3P2O5, mol%) with a high Tg (789K) was prepared and it also exhibited high refractive index and high Vickers hardness, suggesting the barium silicophosphate glasses have widespread applications in high‐power laser glasses and optical fibers.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号