首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 329 毫秒
1.
Polycrystalline Fe2AlB2 bulk including minor Al2O3 is synthesized by reactive hot pressing from Fe, Al, and B powders at 1200°C and 30 MPa for 30 minutes, with a relative density of 96%. The present approach enables a markedly reduced holding time compared with previous studies. The derived Fe2AlB2 shows an electrical resistivity of 2.27±0.01 μΩ·m, Vickers hardness of 10.2±0.2 GPa, flexural strength of 232±25 MPa, compressive strength of 2101±202 MPa, fracture toughness of 5.4±0.2 MPa·m1/2 and work of fracture of 117±12 J/m2. No dominant indentation cracks are observed, indicating that Fe2AlB2 may be quite damage tolerant. Interestingly, a noncatastrophic failure is present in the SENB test, with a high work of fracture. The energy‐absorbing mechanisms in inhibiting crack formation are delamination and pullout of Fe2AlB2 grains.  相似文献   

2.
《Ceramics International》2022,48(18):26326-26334
The bio-inspired 2024Al/B4C composites with a laminate-reticular hierarchical architecture were constructed by squeeze casting of 2024Al into loose freeze-cast ceramic scaffolds. This pressurized infiltration process provided a clean and well-bonded interface without physical gaps. By regulating the initial suspension concentration (20, 25, 30 and 35 vol%), the effects of different ceramic content on the microstructure, damage-tolerance behavior and toughening mechanisms of the composites parallel and perpendicular to the ice-growth direction were investigated. The strength and toughness in the longitudinal direction were greater than that in the transverse direction. The 2024Al/20 vol% B4C composite in the longitudinal direction yielded the highest flexural strength of 658 MPa, crack-initiation toughness (KIc) of 18.4 MPa m1/2 and crack-growth toughness (KJc) of 27.5 MPa m1/2. The unique damage-tolerant properties were attributed to multiple toughening mechanisms, including crack deflection, branching and blunting, ductile-ligament bridging and multiple-crack propagation, as evidenced by the stable crack growth and rising R-curve behavior during fracture. The significantly decreased damage tolerance in the transverse direction was mainly due to inadequate toughening tools. On the other hand, both the flexural strength and fracture toughness reduced remarkably as the ceramic content increased. The 2024Al/35 vol% B4C composite fractured in a single-crack mode and the crack growth path was almost straight, showing a relatively low ?exural strength (502 MPa) and crack-initiation toughness (9.1 MPa m1/2). The toughening mechanism was discussed in terms of the relationship between structural characteristics and cracking mode.  相似文献   

3.
Herein, MoAlB, Fe2AlB2, and Mn2AlB2 with textured microstructures were sinter-forged from pre-reacted preforms in a hot press at 1400, 1200, and 1050 °C, respectively. X-ray diffraction and energy dispersive X-ray spectroscopy confirmed the textured nature and high phase purities. The effect of texturing on the thermoelectric properties was evaluated by measuring thermal diffusivities, electrical resistivities, and Seebeck coefficients on the sinter-forged samples and those of less textured, reactively hot-pressed samples. While the thermoelectric properties were essentially isotropic for sinter-forged Fe2AlB2 and Mn2AlB2, differences included electron-dominated thermal transport in Fe2AlB2 and phonon-dominated transport in Mn2AlB2 over most of the 323–873 K range. Magnetic phase transitions at 281 K in Fe2AlB2 and 308 K in Mn2AlB2 were identified in electrical resistivity measurements. MoAlB was found to have anisotropic thermoelectric properties, with notably small relative Seebeck coefficients ranging from ? 2 μV/K at 323 K and increasing to 5 μV/K at 873 K.  相似文献   

4.
A few authors have reasonably proposed that liquid–liquid phase-separated (LLPS) glasses could show improved fracture strength, Sf, and toughness, KIc, as the second phase could provide a barrier to crack propagation via deflection, bowing, trapping, or bridging. Due to the associated tensile or compressive residual stresses, the second phase could also act as a toughening or a weakening mechanism. In this work, we investigated five glasses of the PbO–B2O3–Al2O3 system spanning across the miscibility gap: Four of them undergo LLPS—three are binodal (two B2O3-rich and one PbO-rich) and one is spinodal—and one does not show LLPS (composition outside the miscibility gap). Their compositions were designed in such a way that the amorphous particles are under compressive residual stresses in some and under tensile residual stresses in others. The following mechanical properties were determined: the Vickers hardness, ball on three balls (B3B) strength, and toughness, KIc-SEVNB (single-edge V-notch beam [SEVNB]). The microstructures and compositions were analyzed using scanning electron microscopy with energy-dispersive X-ray spectrometry. The spinodal glass showed, by far, the best mechanical properties. Its KIc-SEVNB = 1.6 ± 0.1 MPa m1/2, which embodies an increase of almost 50% over the B2O3-rich binodal composition, and 90% considering the PbO-rich binodal composition. Moreover, its fracture strength, Sf = 166 ± 7 MPa, is one of the highest ones ever reported for an LLPS glass. Fracture analyses evidenced that the spinodal composition exhibited the lowest net stress at the fracture point. Moreover, calculations indicate that the internal residual stress level is the lowest in the spinodal glass. The overall results indicate that the microstructural effect of the spinodal glass is the most significant factor for its superior mechanical properties. This work corroborates the idea that LLPS provides a feasible and stimulating solution to improve the mechanical properties of glasses.  相似文献   

5.
《Ceramics International》2021,47(22):31214-31221
Laminated B4C–TiB2 ceramics with h-BN interface layers were successfully prepared by roll forming and tape casting, and samples with different numbers of stacked layers were obtained. Scanning electron microscopy and X-ray diffraction were used to analyze the microstructure and interlayer crystal phases of the composites, and the bending strength, fracture toughness, and work of fracture were measured. As the number of h-BN layers increased, the fracture toughness increased from 7.38 ± 0.5 MPa m1/2 to 9.01 ± 0.61 MPa m1/2, which is 2–3 times higher than that of monolithic B4C ceramics. As the fracture toughness increased, the hardness remained at a high level (31.67 GPa). Bending tests showed that cracks deflected when they encountered the h-BN interfacial layers. The toughening mechanisms included the deflection and branching of cracks and generation of new microcracks, which increased the length of the propagation path and work of fracture.  相似文献   

6.
Dense Ti3AlC2/TiB2 composites were successfully fabricated from B4C/TiC/Ti/Al powders by spark plasma sintering (SPS). The microstructure, flexural strength and fracture toughness of the composites were investigated. The experimental results indicate that the Vickers hardness increased with the increase in TiB2 content. The maximum flexural strength (700 ± 10 MPa) and fracture toughness (7.0 ± 0.2 MPa m1/2) were achieved through addition of 10 vol.% TiB2, however, a slight decrease in the other mechanical properties was observed with TiB2 addition higher than 10 vol.%, which is believed to be due to TiB2 agglomeration.  相似文献   

7.
《Ceramics International》2023,49(20):32799-32807
Al2O3/ZrO2/SiC ceramic composites with different SiC contens have been prepared by hot pressuring. The effect of SiC content on the microstructure and mechanical properties of composites have been studied. The results show that SiC has obvious grain refinement effect on ZTA ceramics and change the fracture mode of the matrix from intergranular fracture to transgranular fracture. Simultaneously, it has been found that the mechanical properties of the material are significantly enhanced in comparison with ZTA matrix. The highest strength is acquired at 10% SiC content, the flexural strength and toughness are obtained when the SiC content is 15 vol%, and the values are 18.86 GPa, 1262 MPa and 6.13 MPa m1/2, respectively. The mechanisms of hardening, strengthening and toughening have been discussed.  相似文献   

8.
Cyclotrimethylenetrinitramine (RDX) coated with nitrocellulose (NC‐RDX) is prepared by an internal solution method and applied in a minimum signature isocyanate‐cured propellant. It was found that RDX was coated or bonded by NC to form NC‐RDX particles; the median particle diameter (d50) and specific surface area of NC‐RDX are in the range from 150 to 240 μm and 0.03 to 0.04 m2⋅g−1, respectively. The NC‐RDX particles could swell in nitrate ester plasticizers with relatively low swelling rate compared with NC added directly in the plasticizers. Different types of ballistic modifiers can be effectively added to NC‐RDX. It was experimentally shown that NC‐RDX can increase the content of NC in the propellant with viscosities in the range from 371 to 394 Pa s and improve the mechanical characteristics of the propellant with maximum tensile strength (σm) between 0.48 MPa<σm<1.92 MPa, elongation at maximum tensile strength (εm) between 28.0%<εm<37.3%, and elastic modulus between 3.18 MPa<E<8.68 MPa in the temperature range from −40 to +50 °C.  相似文献   

9.
A series of LiIn1-xAlxO2 (x =0.05, 0.10, 0.15, 0.20, 0.25) microwave dielectric ceramics with low permittivity were synthesized via a solid-state reaction method. XRD, Raman spectra, and SEM analysis reveal that a single LiInO2 tetragonal structure phase could be obtained at the x < 0.10, and with the x increased further to 0.15–0.25, the diffraction peaks of the secondary phase LiAlO2 were detected. In the LiIn1-xAlxO2 ceramics, the τf was closely related to the εr, and the relative density, microstructure, and microwave dielectric properties were effectively improved by the Al3+ substitution for In3+. Bond valence theory analysis demonstrates that the Al3+ entered the In3+ site exhibits a strength rattling effect, which is beneficial to the increase of εr. While Al3+ substitution for In3+ simultaneously lowers the average ionic polarizability, resulting in a decrease in εr. A near-zero τf (0.74 ppm/°C) combined with εr approximately 12.83, Q × f = 58 200 GHz, was obtained in LiIn0.85Al0.15O2 ceramic sintered at 970°C.  相似文献   

10.
Nitrogen (N)-doped conductive silicon carbide (SiC) of various electrical resistivity grades can satisfy diverse requirements in engineering applications. To understand the mechanisms that determine the electrical resistivity of N-doped conductive SiC ceramics during the fast spark plasma sintering (SPS) process, SiC ceramics were synthesized using SPS in an N2 atmosphere with SiC powder and traditional Al2O3–Y2O3 additive as raw materials at a sintering temperature of 1850–2000°C for 1–10 min. The electrical resistivity was successfully varied over a wide range of 10−3–101 Ω cm by modifying the sintering conditions. The SPS-SiC ceramics consisted of mainly Y–Al–Si–O–C–N glass phase and N-doped SiC. The Y–Al–Si–O–C–N glass phase decomposed to an Si-rich phase and N-doped YxSiyCz at 2000°C. The Vickers hardness, elastic modulus, and fracture toughness of the SPS-SiC ceramics varied within the ranges of 14.35–25.12 GPa, 310.97–400.12 GPa, and 2.46–5.39 MPa m1/2, respectively. The electrical resistivity of the obtained SPS-SiC ceramics was primarily determined by their carrier mobility.  相似文献   

11.
The elastic, magnetic, electrical, and thermodynamic properties of bulk polycrystalline Fe2AlB2 are reported, with further theoretical insights provided through first-principles calculations. DFT simulations, along with an appropriate empirical method to treat magnetic contributions, reproduce well the experimental heat capacity, phonon thermal conductivity, and thermal expansion. The shear, Young's and bulk moduli all decrease linearly from 107.7, 264.5, and 162.4 GPa at 298 K to 91.4, 227.7, and 149.6 GPa at 1273 K, respectively, while the Poisson's ratio shows a weak dependence on temperature, hovering around 0.23-0.26. The mechanical damping, Q−1, is found to be a weak function of temperature up to 973 K, but above this temperature increases sharply, peaking at a specific temperature that becomes higher with increasing resonant frequency. The phonon contribution plays a dominant role in the measured heat capacity from 4.2 to 1000 K, while the magnetic contribution becomes significant around the Curie temperature (301 K). The electronic contribution increases with temperature above 100 K. Furthermore, the standard enthalpy, entropy, and Gibbs free energy are calculated as 16.60 kJ/mol, 92.92 J/(mol·K) and −11.09 kJ/mol, respectively. The thermal conductivity increases linearly with increasing temperature from RT to 1173 K, up to around 13.0 W/(m·K) at 1323 K after hovering at around 7.8 W/(m·K) in the low-temperature range. The electrons play a dominant role in heat conduction, while the phonons contribute only a little to the thermal conductivity. The dilatometric coefficient of thermal expansion of Fe2AlB2 is measured as 13.5 × 10−6 K−1 in the temperature range RT-1348 K.  相似文献   

12.
ZTM ceramics were successfully derived from coal gangue. The effect of zirconium source (ZrO2 and ZrOCl2?8H2O) and content on properties of the ZTM ceramics has been studied. The phase composition, density, and microscopic morphology were characterized with X-ray diffraction (XRD), Archimedes method and scanning electron microscopy (SEM). The influence of zirconium source, sintering temperature, zirconia content on flexural properties and fracture toughness was studied. The sample, with ZrOCl2?8H2O added 12% zirconia (Z2TM12) sintered at 1475 °C for 3 h has the highest density of 2.83 g/cm3. Partially stable t-ZrO2 was present in samples with zirconium oxychloride (ZrOCl2?8H2O) as the zirconium source, due to the constraints of mullite crystals. Therefore, Z2TM12 had both microcrack toughening and stress phase transformation toughening mechanisms. The flexural strength was increased from 162.40 MPa to 285.04 MPa, while the fracture toughness was improved to 3.55 MPa m1/2 from 2.38 MPa m1/2. Our achievement can be used as a reference to fabricate ZTM ceramics from coal gangue with high-value additions.  相似文献   

13.
《Ceramics International》2023,49(19):31794-31801
In this paper, BNNSs/Al2O3 composite powder was prepared by in-situ reaction using borate nitridation method and BNNSs/Al2O3 composite ceramics were prepared by hot-pressing sintering. This method achieves uniform mixing of BNNSs and Al2O3 ceramic matrix and reduces the introduction of impurities in the processing process. The BNNSs/Al2O3 composite ceramics have excellent bending strength (549.4 MPa), fracture toughness (5.18 MPa m1/2) and hardness (21.3 GPa). The high hardness of composite ceramics is attributed to high grain boundary strength and density. The reinforcing mechanisms of ceramics include BNNSs pull-out, BNNSs bridging, crack deflection as well as the transgranular fracture and intergranular fracture of Al2O3 matrix.  相似文献   

14.
《Ceramics International》2022,48(15):21370-21377
A laminated silicon nitride (Si3N4) ceramic material with a hollow, oriented, one-dimensional microstructure was successfully prepared based on the tape casting and sacrificial template method. The results show that hollow, oriented, one-dimensional microstructures can effectively induce crack deflection. Different arrangements of the structural design layer and dense layer will have different effects on the material. In particular, bulks with a single-layer orthogonal arrangement of the structural design layer possess high toughness and obvious crack deflection during the fracture process. A kind of multiscale crack deflection mode was realized. Compared with the fracture toughness of the monolithic Si3N4 ceramic bulk (5.55 MPa m1/2), the fracture toughness can reach 8.73 MPa m1/2, and the flexural strength can still reach 391.47 MPa with only a slight decrease.  相似文献   

15.
The paper describes the structure and properties of preceramic paper-derived Ti3Al(Si)C2-based composites fabricated by spark plasma sintering. The effect of sintering temperature and pressure on microstructure and mechanical properties of the composites was studied. The microstructure and phase composition were analyzed by scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. It was found that at 1150 °C the sintering of materials with the MAX-phase content above 84 vol% leads to nearly dense composites. The partial decomposition of the Ti3Al(Si)C2 phase becomes stronger with the temperature increase from 1150 to 1350 °C. In this case, composite materials with more than 20 vol% of TiC were obtained. The paper-derived Ti3Al(Si)C2-based composites with the flexural strength > 900 MPa and fracture toughness of >5 MPa m1/2 were sintered at 1150 °C. The high values of flexural strength were attributed to fine microstructure and strengthening effect by secondary TiC and Al2O3 phases. The flexural strength and fracture toughness decrease with increase of the sintering temperature that is caused by phase composition and porosity of the composites. The hardness of composites increases from ~9.7 GPa (at 1150 °C) to ~11.2 GPa (at 1350 °C) due to higher content of TiC and Al2O3 phases.  相似文献   

16.
《Ceramics International》2022,48(9):12006-12013
B4C-based composites were synthesized by spark plasma sintering using B4C、Ti3SiC2、Si as starting materials. The effects of sintering temperature and second phase content on mechanical performance and microstructure of composites were studied. Full dense B4C-based composites were obtained at a low sintering temperature of 1800 °C. The B4C-based composite with 10 wt% (TiB2+SiC) shows excellent mechanical properties: the Vickers hardness, fracture toughness, and flexural strength are 33 GPa, 8 MPa m1/2, 569 MPa, respectively. High hardness and flexural strength were attributed to the high relative density and grain refinement, the high fracture toughness was owing to the crack deflection and uniform distribution of the second phase.  相似文献   

17.
Near-fully dense Ti3Si(Al)C2/Ti5Si3 composites were synthesized by in situ hot pressing/solid–liquid reaction process under a pressure of 30 MPa in a flowing Ar atmosphere at 1580 °C for 60 min. Compared to monolithic Ti3Si(Al)C2, Ti3Si(Al)C2/Ti5Si3 composites exhibit higher hardness and improved wear resistance, but a slight loss in flexural strength (about 26% lower than Ti3Si(Al)C2 matrix). In addition, Ti3Si(Al)C2/Ti5Si3 composites maintain a high fracture toughness (KIC = 5.69–6.79 MPa m1/2). The Ti3Si(Al)C2/30 vol.%Ti5Si3 composite shows the highest Vickers hardness (68% higher than that of Ti3Si(Al)C2) and best wear resistance (the wear resistance increases by 2 orders of magnitude). The improved properties are mainly ascribed to the contribution of hard Ti5Si3 particles, and the strength degradation is mainly due to the lower Young's modulus and strength of Ti5Si3.  相似文献   

18.
《Ceramics International》2022,48(9):11981-11987
Previous research have reported that B4C–TiB2 composites could be prepared by the reactive sintering of TiC–B powder mixtures. However, due to spontaneous oxidation of raw powders, using TiC–B powder mixtures with a B/TiC molar ratio of 6: 1 introduced an intermediate phase of C during the sintering process, which deteriorated the hardness of the composites. In this report, the effects of B excess on the phase composition, microstructure, and mechanical properties of B4C–TiB2 composites fabricated by reactive hot pressing TiC–B powder mixtures were investigated. XRD and Raman spectra confirmed that lattice expansion occurred in B-rich boron carbide and BxC–TiB2 (x > 4) composites were obtained. The increasing B content improved the hardness and fracture toughness but decreased the flexural strength of BxC–TiB2 (x > 4) composites. When the molar ratio of B/TiC increased from 6.6:1 to 7.8:1, the Vickers hardness and the fracture toughness of the composites were enhanced from 26.7 GPa and 4.53 MPa m1/2 to 30.4 GPa and 5.78 MPa m1/2, respectively. The improved hardness was attributed to the microstructural improvement, while the toughening mechanism was crack deflection, crack bridging and crack branching.  相似文献   

19.
《Ceramics International》2022,48(5):6745-6749
A series of (Ti0.5Nb0.5)C-x wt.% SiC (x = 0, 5, 10, 20) composites were prepared by spark plasma sintering. Dense microstructures with well‐dispersed SiC particles were obtained for all composites. With the increment of SiC content, the Vickers hardness, Young's modulus and fracture toughness increase monotonically. An optimized flexural strength of 706 MPa was achieved in (Ti0.5Nb0.5)C-5 wt.%SiC composite. (Ti0.5Nb0.5)C-20 wt%SiC composite exhibits the highest fracture toughness of 6.8 MPa m1/2. The crack deflections and the suppression of grain growth were the main strengthening and toughening mechanisms. Besides, (Ti0.5Nb0.5)C-20 wt%SiC composite exhibit the highest thermal conductivity of 45 W/m·K at 800 °C.  相似文献   

20.
《Ceramics International》2020,46(8):11515-11529
The Ni0.2Mg0.8-xZnxFe2O4 (x = 0.0, 0.2, 0.4, 0.6 & 0.8) nanomaterials were prepared via sol-gel technique. These samples were calcined at three different temperatures (T) such as 400, 450 and 500 °C/5 h. Furthermore, the X-ray diffraction (XRD) patterns of all the calcined samples revealed the single phase cubic spinel structure. The lattice constants (a = b = c) were noticed to be increasing with increase of ‘x’. The grain shape, size and distribution of x = 0.0–0.8 contents were analyzed using field emission electron microscope (FESEM). The x = 0.2 content provided higher optical band gap energy (Eg) value than the remaining contents. Furthermore, the magnetization versus magnetic field (M − H) curves indicated the superparamagnetic nature of x = 0.0–0.8 contents. The high saturation magnetization (Ms) was noticed for x = 0.4 and 0.6 contents. In addition, the distribution of cations like Ni+2, Mg+2, Zn+2, Fe+3 and Fe+2 was performed between the tetrahedral (A) and octahedral (B) sites. The frequency dependence of dielectric constant (ε′), dielectric loss (ε") and ac-electrical conductivity (σac) was investigated as a function of composition. Moreover, the temperature variation of ε′ showed the decreasing trend of dielectric transition temperature (Te) with increase of ‘x’. The high ε′ of 163.1 (at 1 MHz) was noticed at x = 0.2 content calcined at 500 °C. Using the power law fit applied to the log σac-log ω plots, the dc-electrical conductivity (σdc) and exponent (n) parameters were calculated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号