共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2023,49(20):33188-33196
Nowadays, Y2O3–Al2O3–SiO2 (YAS) glass joining is considered to be a promising scheme for nuclear-grade continuous silicon carbide (SiC) fiber reinforced SiC matrix composites (SiC/SiC). CaO has great potential for nuclear applications since it has low reactivity and low decay rate under nuclear irradiation. In this paper, the effect of CaO doping on the structure, thermophysical properties, and crystallization behavior of YAS glass was systematically studied. As the CaO doping content increased, the number of bridge oxygens and the viscosity at high temperatures reduced gradually. After heat treatment at 1400 °C, the main phases in YAS glass were β-Y2Si2O7, mullite, and SiO2 (coexistence of crystalline and glass phases), while that with 3.0% CaO doping turned into a single glassy phase under the same treatment conditions. Moreover, a structural model and the modification mechanism were proposed, which provided a theoretical basis for the subsequent component design and optimization. 相似文献
2.
《Ceramics International》2016,42(7):7943-7949
This paper reports the investigation of the performance of Li2O–B2O3–SiO2 (LBS) glass as a sintering aid to lower the sintering temperature of BaO–0.15ZnO–4TiO2 (BZT) ceramics, as well as the detailed study on the sintering behavior, phase evolution, microstructure and microwave dielectric properties of the resulting BZT ceramics. The addition of LBS glass significantly lowers the sintering temperature of the BZT ceramics from 1150 °C to 875–925 °C. Small amount of LBS glass promotes the densification of BZT ceramic and improves the dielectric properties. However, excessive LBS addition leads to the precipitation of glass phase and growth of abnormal grain, deteriorating the dielectric properties of the BZT ceramic. The BZT ceramic with 5 wt% LBS addition sintered at 900 °C shows excellent microwave dielectric properties: εr=27.88, Q×f=14,795 GHz. 相似文献
3.
《Ceramics International》2016,42(11):12694-12700
Addition of CaO–B2O3–SiO2 (CBS) glass was performed to lower the sintering temperature of lead-free Ba0.85Ca0.15Zr0.1Ti0.9O3 (BCZT) ceramics. Orthorhombic and tetragonal phases coexisted in CBS-free BCZT ceramics. The BCZT ceramics transformed into a pseudo-cubic phase when sintered at 1300 °C with increasing CBS glass content. Additionally, the secondary phase, Ba2TiSi2O8, was observed when CBS glass was added. The density initially increased, reached a maximum value with 2 wt% CBS glass, and then decreased rapidly with further increase in CBS glass content, which was consistent with the microstructure. The ɛ, Tc, Pr, and d33 depend on microstructure, and the results agree with the density. Evident relaxation behavior was observed. Observed results were inferred to be dependent on the microstructure, phase structure, lattice distortion, and secondary phase. The sample with 2 wt% CBS glass showed the excellent performance, which could be a promising substitute to lead-free piezoelectric ceramics for lead-based materials. 相似文献
4.
《Ceramics International》2017,43(9):7099-7105
A Li2O-ZnO-SiO2 (LZS) glass system was modified with CuO, and its phase development, microstructure evolution, crystallization kinetics and thermal expansion properties were investigated as a function of heat treatment temperature. As a result of the X-ray diffraction study and microstructure observation, lithium zinc silicate formed as the first crystalline phase with increasing heat treatment temperature. Silica polymorph developed as minor crystalline phase at higher temperatures. From the X-ray diffraction patterns, CuO addition led to a decrease in both the crystallization temperature of lithium zinc silicate phase and the volume fraction of quartz phase. According to the crystallization kinetics, the crystallization activation energy for lithium zinc silicates is almost equal to the diffusion activation energy of Zn2+ in glass, it suggests that the diffusion of network modifier Zn2+ dominates the crystallization of lithium zinc silicates. Additionally, CuO addition caused the transition of Zn2+ from network modifiers to network formers. From the thermal expansion coefficient measurements, two abrupt changes in slope of the thermal expansion curves were observed and attributed to the phase transitions of cristobalite and lithium zinc silicate, respectively. Comparison of the thermal expansion coefficient of two types of glass-ceramics revealed that CuO addition in the LZS system can partly inhibit the formation of cristobalite at high temperatures. 相似文献
5.
BaTi4O9 (BT4) microwave dielectric ceramics using a copper electrode and containing 10 wt% BaO–ZnO–B2O3–SiO2 (BZBS) glass frit were sintered under reducing atmosphere at 950 °C and were investigated on the phase evolutions, microstructures and dielectric properties of BT4 with various BaO/SiO2 and ZnO/SiO2 ratios of BZBS glasses. Experimental results show that the BaO/SiO2 ratio contributes to wettability of glass with BaTi4O9 ceramics, and ZnO/SiO2 ratio determines the densification of BaTi4O9 ceramics. The different Ba–Ti–O and Ba–Cu–O phases with various Ba/Ti and Ba/Cu ratios can be attributed to the contents of BaO in glass. Ba4Ti13O30 and Ba2Cu3O5+X may form when BaO contents are too high, and inducing copper diffusion due to the reactions of BaO and Cu, accompanying with degrading of the dielectric characteristics. If the ZnO contents of BZBS glasses were raised, a little bit of ZnSiO3 and Ba2Cu3O5+X phases appear without Cu diffusion due to non-reaction of ZnO and CuO. The high ZnO/SiO2 ratio of glass reveals the lower softening point, indicating that the high ZnO glass could enhance the density and therefore increase the dielectric constant and quality factor. 相似文献
6.
7.
8.
Glass samples with composition of (50?X) PbO–X MgO–25 TiO2–25B2O3 (where X=0, 5, 10 and 15 mol%) were prepared using conventional quenching technique. The amorphous nature of glass samples were confirmed by XRD. The glass transition temperature, Tg and crystallization temperature Tc were determined from the DTA. It has been observed that the addition of MgO enhances the Tg. The rise in Tg with MgO content may be attributed to the greater field strength of Mg2+ cation (as compared to Pb2+) which leads to the formation of stronger bonds. These glass samples were converted to glass–ceramics by following a two-stage heat treatment schedule. It was observed that there was good correlation between the density and CTE results of the glass–ceramics. The XRD results revealed the formation of tetragonal lead titanate as a major crystalline phase in the glass–ceramics. The addition of MgO to the glass contributes to the formation of MgB4O7. The dielectric constant for all the glass–ceramic samples was observed to be higher than that of corresponding glass samples. Further, with addition of MgO the room temperature dielectric constant for glass–ceramic samples increases up to 10 mol% of MgO and then decreases for 15 mol%. It has been further observed that the variation of dielectric constant of glass–ceramic samples with MgO content is exactly opposite to the variation of crystallite size of PbTiO3 embedded in the glass ceramic-samples. 相似文献
9.
《Ceramics International》2022,48(15):21245-21257
The feasibility of preparing low-cost glass-ceramics from Zn-containing dust and secondary molten slag generated during the carbothermal reduction of copper slag was investigated. Analytical-grade agents, such as ZnO, Fe2O3, SiO2, CaO, and Al2O3, were used to simulate the dust and secondary slag. The effect of ZnO content on the crystallization behavior, structure, and mechanical properties of the glass-ceramics was investigated through X-ray diffraction analysis, scanning electron microscopy-energy dispersive spectrometry, differential scanning calorimetry, Fourier transform infrared spectroscopy, and Raman spectroscopy. The results showed that with increased ZnO content from 0 to 6 wt%, the crystallization activation energy of base glass increased from 386.05 to 425.89 kJ/mol. Meanwhile, the average value of the crystal growth index increased from 1.91 to 4.10, and the highest crystallization rate of the glass-ceramics increased from about 1.44 to 23.11 mm3/min. The increased ZnO in glass-ceramics promoted the precipitation of gehlenite, but inhibit the crystallization of anorthite. When the ZnO content was 6 wt%, the comprehensive properties of the glass-ceramics were better; the flexural strength, microhardness, volume density, water absorption rate, and open porosity were 58.67 MPa, 738.35 HV, 2.92 g/cm3, 0.44% and 1.27%, respectively. 相似文献
10.
Tovhowani Innocent Kwinda Dirk Enke Sharon Koppka 《Journal of the American Ceramic Society》2022,105(5):3261-3278
This study examines the incorporation of TiO2 into sodium borosilicate glasses and its effect on the formation of glassy and crystalline microphases. Glasses in the composition range: 7Na2O–23B2O3–(70 - X)SiO2–XTiO2 (where X = 0–14.6 mol.% TiO2) which exhibit phase separation were investigated. Raman studies confirm the formation of two different TiO2 coordinations depending on the molar content of TiO2. Thermal properties of glasses are unaffected by TiO2 addition. The domain size of microphase development in TiO2-containing glass indicates competition between phase separation and crystallization. Enrichment of titanium on the interphase between glassy microphases reduces the mass transfer and consequently limits the growth rate of glassy phases. This competes with the formation of anatase for which a nucleation-controlled mechanism is proposed. 相似文献
11.
The glass structure, wetting behavior and crystallization of BaO–Al2O3–B2O3–SiO2 system glass containing 2–10 mol% Al2O3 were investigated. The introduction of Al2O3 caused the conversion of [BO3] units and [BO4] units to each other and it played as glass network former when the content was up to 10 mol%, accompanied by [BO4] → [BO3]. The stability of the glass improved first and then decreased as Al2O3 increased from 2 to 10 mol%, the glass with 5 mol% Al2O3 being the most stable one. The wetting behavior of the glasses indicates that excess Al2O3 leads to high sealing temperature. The glass containing 5 mol% Al2O3 characterized by a lower sealing temperature is suitable for SOFC sealing. Al2O3 improves the crystallization temperature of the glass. The crystal phases in the reheated glasses are mainly composed of Ba2Si3O8, BaSiO3, BaB2O4 and BaAl2Si2O8. Al2O3 helps the crystallization of BaSiO3 and BaAl2Si2O8. 相似文献
12.
《Ceramics International》2021,47(19):26789-26799
White glass enamels with high solar reflectance and containing different WO3 concentrations have been prepared and characterized with regard to their optical, mechanical and microstructural characteristics. Upon addition of WO3 to a glass containing SiO2, B2O3, Al2O3, Na2O, CaO, and ZnO, the crystallization of scheelite follows a crystallization mechanism of bulk type where scheelite grows in one-dimension in a patterned morphology dominated by the heating rate and the concentration of WO3. Octahedral bipyramids and arrow-like crystals appeared in enamels containing WO3 concentration above 6%. The presence of scheelite crystals with different orientations also leads to slight variations in hardness and Young modulus thus obtaining Hv values between 8 and 8.8 GPa and E values between 72 and 83 GPa. Similarly, the optical properties such as whiteness, brightness and solar reflectance increase with the presence of scheelite, and the highest solar reflectance occurs for the enamel containing arrow-like and bipyramidal crystals. 相似文献
13.
14.
《Ceramics International》2016,42(13):14350-14354
ZnO–Bi2O3–MnO2 (ZBM)-based varistors were fabricated via doping a novel synthetic multi-phase (SMP) additive produced by calcining the mixture of 18Bi2O3·Cr2O3 at a given temperature. The effects of the SMP on the microstructural and electrical properties of ZBM varistors were investigated. It was found that the SMP dopant was a compound crystalline phases including Bi–Cr–O phases (Bi7.38Cr0.62O12+x and CrBi18O30) and small amounts of Bi2O3 rather than a synthesized polycrystal. The Bi–Cr–O phases were not emerged for samples with x=1, indicating that the amount of it is tiny and the small Bi2O3 may accelerate ZnO grain growth. With more SMP doping (x>1) in the ZBM ceramics, it acted as a barrier inhibiting grain growth. For samples with x=5, excellent electrical properties were obtained: the nonlinear coefficient α increased up to 50.19 corresponding to the highly barrier height of 2.62 eV; the leakage current IL reduced to 0.3 μA. The dielectric constant εa is proportional to the ratio of the grain size d to the thickness of the depletion layer width t, which explained the εa increased at f=1 kHz for the samples with x=1 and 5. The improvement of the electrical properties can be explained by the oxygen absorption mechanism. 相似文献
15.
《Journal of the European Ceramic Society》2023,43(6):2541-2552
In this work, the thermal stability of a BaO–CaO–SiO2–B2O3 glass sealant, named “H”, was investigated by differential scanning calorimetry (DSC). The crystallization behavior of glass H as the sealant matrix was investigated by a combination of experimental X-ray diffraction (XRD) analysis and thermodynamic simulation with the FactSage package. A good agreement was found between the Rietveld refinement of XRD experiments and the FactSage simulation. Particular attention was also given to the influence of the Sr2SiO4 filler added to the glass matrix “H” on the thermal expansion and microstructures of glass-Sr2SiO4 composites by means of dilatometry and scanning electron microscopy (SEM). The reinforced 20 wt% Sr2SiO4 composite (HS2S20) showed excellent properties and, thus, its joining performance was investigated using SrTi0.75Fe0.25O3-δ (STF25) and Aluchrom as promising oxygen transport membrane (OTM) and counterpart, respectively. The joining behaviors were investigated by comparing different joining temperatures. 920 °C is the best joining temperature for HS2S20 sealant. 相似文献
16.
《Ceramics International》2023,49(8):12499-12507
MgO–Al2O3–SiO2 glass-ceramics have been widely used in military, industrial, and construction applications. The nucleating agent is one of the most important factors in the production of glass-ceramics as it can control the crystallization temperature or the grain size. In this study, we investigated the effect of replacing P2O5 with different amounts of TiO2 on the crystallization, structure, and mechanical properties of an MgO–Al2O3–SiO2 system. The crystallization and microstructure were investigated by differential scanning calorimetry, Raman spectroscopy, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The mechanical properties were investigated by measuring the Vickers hardness, Young's modulus, and fracture toughness. The results showed that adding TiO2 favored the precipitation of fine grains and significantly increased the Vickers hardness, Young's modulus, and fracture toughness of the glasses. Introducing an appropriate amount of TiO2 can make a glass structure more compact, promote crystallization, and improve the mechanical properties of MgO–Al2O3–SiO2 glass-ceramics. 相似文献
17.
《Ceramics International》2023,49(3):4872-4880
CaO–B2O3–SiO2–Ta2O5 (CBST) glass-ceramics, with different Ta2O5 content, (up to 6 mol%), have been prepared by using glass melt quenching followed by heat treatment between 800 and 880 °C. The Fourier Transform Infrared (FTIR) results showed that the stronger the attraction of Ta5+ to the oxygens in the BO33? and SiO32? structures, the more easily the B–O and Si–O bonds will be destroyed. The underlying reason is most probably the high field strength of Ta5+, which results in a weakening of the vibration intensities of the [BO3] and [SiO4] units. Moreover, the Differential Scanning Calorimetry (DSC) results showed that the softening point (Tg), crystallization starting temperature (Tc1), and exothermic crystallization peak temperature (Tp1), of the CaSiO3 phase, shifted to higher values with the addition of Ta2O5. Also, the crystallization activation energy (Ea) and the glass stability factor (ΔT) of the CaSiO3 phase increased, which indicated that the CaSiO3 phase of the glass became inhibited by the addition of Ta2O5. It was, thus, obvious that there was a need of glass characterization. The results of the crystallization kinetics showed that the critical cooling rate decreased with the addition of Ta2O5, which indicated that the viscosity of the system had increased. The CBST glass-ceramics, containing 1 mol% Ta2O5, that were sintered at 875 °C for 15 min showed excellent dielectric properties: εr = 6.22 and tanδ = 1.19 × 10?3 (1 MHz). To sum up, CaO–B2O3–SiO2–Ta2O5 glass-ceramics are potential low temperature co-fired ceramic substrate materials. 相似文献
18.
《Ceramics International》2021,47(22):31666-31680
The present study replaced 3.30 and 9.00 mol.% BaO for CaO in a SiO2–B2O3–Al2O3–CaO–Na2O–P2O5 bioactive glass system used for implant coating applications. Variations of the glass structure, thermal properties, cytotoxicity, and radiopacity of glasses were studied. As demonstrated by the results, upon adding barium oxide to the glass structure, the weight density increased significantly, while a slight decrease in oxygen density was determined. Introducing barium oxide into glass composition did not cause any considerable change in the spectra of FTIR and Raman. It was demonstrated that the amount of bridging oxygen in the glass structure remained quite unaffected. The hot stage microscopy evaluations revealed further shrinkage of barium-containing frits due to lower viscosity and hence, higher viscous flow of these glasses. By substituting barium oxide for calcium oxide and increasing its concentration, the glass transition temperature (Tg) and the dilatometric softening temperature (Td) decreased, while the thermal expansion coefficient increased. Moreover, upon substituting 9 mol.% barium oxide for calcium oxide, a 30 °C reduction in maximum sintering temperature (Tms) of the glass was obtained, whereas the shrinkage rate was increased 1.7 times. It was indicated that the sintering process of barium-incorporated glasses would easily proceed without any phase crystallization. The barium-incorporated glasses exhibited more radiopacity. Additionally, no cytotoxic effect was caused by the substitution, and the Ba-containing glasses could be used for biomedical applications and implant coating as well. 相似文献
19.
《Ceramics International》2022,48(6):7677-7686
The composition of lithium aluminosilicate (LAS) with different zinc oxide-magnesium oxide (ZnO–MgO) contents that ranged from 0 to 1.45 wt percent (wt%) was investigated to determine the thermal shock resistance properties of the glass-ceramics. The LAS glasses were melted in an alumina crucible at 1550 °C for 5 h, and the green compact samples were then heat-treated at 1100 °C for 3.5 h. The presence of zinc oxide (ZnO) in the compositions did not change the major crystal phase of β-spodumene. However, the addition of ZnO shifted the pronounced peak to a lower angle and increased the percentage of crystallinity from 55% to 59%. Additionally, the function of ZnO in LAS glass-ceramics as the network modifier was confirmed through Fourier Transform Infrared Spectroscopy (FTIR) analysis. The physio-mechanical properties were improved when 1.45 wt% ZnO was added to the LAS glass-ceramics. The results showed increased density (2.42 g/cm3), low porosity (0.85%), high flexural strength (125.23 MPa), and low coefficient of thermal expansion (25–800 °C) (CTE(25–800 °C)) value of 1.73 × 10?6 °C?1. Meanwhile, the thermal shock resistance properties evaluation of the LAS glass-ceramics at different ZnO contents were conducted at different thermal shock temperatures of 200 °C, 500 °C, and 800 °C. The critical temperature of the LAS specimens with 1.45 wt% ZnO demonstrated the ability to withstand a thermal shock at 800 °C while preserving 87% of their initial strength of 108.40 MPa, exemplifying the best LAS glass-ceramics properties for rapid high-temperature change applications. 相似文献
20.
《Ceramics International》2021,47(18):25997-26009
The effects of adding ZrO2 and TiO2 at the expense of MgF2 on the crystallization, microstructure, mechanical properties, thermal properties and electrical properties of mica glass-ceramics based on the SiO2–MgO–MgF2–K2O system were investigated by the differential scanning calorimetry (DSC), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), microhardness tester and resistivity tester. The electrical properties were discussed emphatically. The results showed that the additions of ZrO2 and/or TiO2 at the expense of MgF2 effectively increase the viscosity, the glass transition temperatures (Tg) and the crystallization temperatures (Tp) of the glasses. The crystallization activation energy (Ec) of the amorphous glasses varied with the nucleating agents was discussed in depth. It was discovered that the nucleating agents had no effect on the crystal phase type but had a certain effect on the crystallinity and microstructure. Tetrasilicic fluoromica and enstatite were precipitated at different crystallization temperatures. Due to the non-stoichiometric ratio of tetrasilicic fluoromica crystal, the prepared glass-ceramics had high dielectric constant (24.4–34.3) and volume resistivity (>2 × 1011 Ω cm) at 25 °C, and the dielectric loss was almost zero. 相似文献