首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of high‐quality Cu‐doped Zn–In–S nanocrystals (d‐NCs) were prepared by a conventional hot injection process. The full‐visible spectrum emission from 480 to 648 nm can be easily achieved by adjusting the Cu doping concentration in the Zn–In–S system, but not by varying the ratio of In/Zn in the alloyed host material. After wrapping the ZnS shell around the Zn–In–S:Cu d‐NCs core, the resultant Zn–In–S:Cu/ZnS core/shell d‐NCs not only exhibited an enhanced prominent photoluminescent quantum yield (PLQY) up to 65% but also possessed the excellent thermal, photochemical stability, and longer PL lifetime. Furthermore, high color rendition white light was generated from a single color converter Zn–In–S:Cu/ZnS core/shell NCs‐assisted white light‐emitting diodes (LEDs). Under operation of 38 mA forward bias current, the fabricated white LEDs emitted bright natural white light with a luminous efficiency of 62 lm/W, and the correlated color temperature of 5658 K. Simultaneously, the good color stability was accompanied by the CIE color coordinates of (0.3287, 0.3527) under different forward bias currents.  相似文献   

2.
The light‐emitting diode (LED)‐based light sources have been widely applied across numerous industries and in everyday practical uses. Recently, the LED‐based light source consisting of red, green and blue LEDs with narrow spectral bands (RGB‐LED) has been a more preferred illumination source than the common white phosphor LED and other traditional broadband light sources because the RGB‐LED can create many types of illumination color. The color rendering index of the RGB‐LED, however, is considerably lower compared to the traditional broadband light sources and the multi‐band LED light source (MB‐LED), which is composed of several LEDs and can accurately simulate daylight illuminants. Considering 3 relatively narrow spectral bands of the RGB‐LED light source, the color constancy, which is referred to as the ability of the human visual system to attenuate influences of illumination color change and hold the perception of a surface color constant, may be worse under the RGB‐LED light source than under the traditional broadband light sources or under the MB‐LED. In this study, we investigated categorical color constancy using a color naming method with real Munsell color chips under illumination changes from neutral to red, green, blue, and yellow illuminations. The neutral and 4 chromatic illuminants were produced by the RGB‐LED light source. A modified use of the color constancy index, which describes a centroid shift of each color category, was introduced to evaluate the color constancy performance. The results revealed that categorical color constancy under the 4 chromatic illuminants held relatively well, except for the red, brown, orange, and yellow color categories under the blue illumination and the orange color category under the yellow illumination. Furthermore, the categorical color constancy under red and green illuminations was better than the categorical color constancy under blue and yellow illuminations. The results indicate that a color constancy mechanism in the visual system functions in color categories when the illuminant emits an insufficient spectrum to render the colors of reflecting surfaces accurately. However, it is not recommended to use the RGB‐LED light source to produce blue and yellow illuminations because of the poor color constancy.  相似文献   

3.
Tin fluorophosphate (TFP) glass, which can be used to manufacture a phosphor‐in‐glass (PiG) for achieving high‐power white light‐emitting diodes (w‐LEDs), has attracted a great deal of attention because of its low‐melting point. Mn2+‐doped ultralow glass transition temperature (~122°C) Sn–F–P–O glasses were prepared to achieve broadband visible light emission from 390 to 720 nm. By controlling the concentration of MnO, the emission color of the TFP glass can be adjusted from blue/cool white to warm white/red. In particular, 0.2 mol% MnO‐doped TFP glass, which yields bright and warm white light and has ultralow glass transition temperature and thermal stability, has a promising application prospect in the field of high‐power w‐LEDs.  相似文献   

4.
Thick-film phosphor-in-glasses (PiGs) were fabricated via a screen-printing method with various phosphor layer structures, to compose a white light emitting diode (LED). Green (Lu3Al5O12:Ce3+) and red (CaAlSiN3:Eu2+) phosphors were mixed, layered, and patterned on a glass substrate. The chromaticity of each structured PiG was tuned to achieve a white LED by varying phosphor content and thickness. The emission spectra and the related various color conversion properties, including color coordinates, correlated color temperature (CCT), color rendering index (CRI), luminous efficacy (LE) and the color gamut of the mounted PiGs with different phosphor layer structures were examined and compared. Time-resolved photoluminescence (TRPL) measurements of the white LEDs with various phosphor layer structural designs were also obtained and compared. It was observed that spectral variation depended on the PiG layer structure. A proper PiG layer structural design was discussed for practical applications.  相似文献   

5.
The light‐emitting diode (LED) has attracted attention as an alternative light source to fluorescent and incandescent lighting. The characteristics of LED light are different from other sources, but regulations for LED products have not been completely established. Common LED lights, such as automotive lamps, street lighting systems and traffic lights, are produced under the existing glare regulations for other light sources, and some organizations are seeking to establish standardized regulations for LED products. Glare can impair vision and cause discomfort and must be considered when establishing regulations for lights. In this study, we measured the sensitivity of observers to the discomfort glare from color LEDs and analyzed the correlation between discomfort glare sensitivity and brightness sensitivity using heterochromatic brightness matching and flicker photometry. The results indicate a correlation between discomfort glare sensitivity and brightness sensitivity using blue LEDs and mild correlations with green and red LEDs. © 2010 Wiley Periodicals, Inc. Col Res Appl, 2010.  相似文献   

6.
When displaying art, several criteria must be balanced when designing illumination including the artist's intention, damage, energy efficiency, viewing experience and understanding, and for commercial galleries and sales. The most common lighting for art includes natural daylight and incandescent spotlights. Neither source is optimal for all criteria; thus there is considerable interest in the use of white‐light light‐emitting diode (LED) lighting. A feasibility study was conducted to address two questions. First, was it possible to design a three‐primary LED source that yielded the same color rendering as common museum lighting? Second, could one design the lighting to achieve specific color appearance attributes? Three‐primary lights using a Gaussian function were optimized matching the chromaticity of D65 and minimizing color differences for a set of acrylic dispersion paints. The optimal wavelengths depended on bandwidth. Lights were also optimized that either maximized or minimized average chroma. A set of real LEDs was selected that produced similar results when evaluated computationally. A source that increases chroma may be useful when used to illuminate works of art with high light sensitivity: very low illuminances are necessary and such a source will compensate for the reduction of colorfulness and visual clarity. A source that decreases chroma may be used to render art in similar fashion to low‐light conditions such as churches and caves. In general, white LED lighting is advantageous for art conservation because they do not emit UV and IR radiation and their visible radiation is reduced when compared with their continuous spectrum equivalent. © 2010 Wiley Periodicals, Inc. Col Res Appl, 2011  相似文献   

7.
《Ceramics International》2020,46(3):3113-3118
Currently, phosphor-converted white light-emitting diodes offer low energy consumption, good environmental stability, and a long lifetime. Hence, they are widely utilized in high-power light-emitting diode (LED) applications such as those in the automotive headlamp industries. However, obtaining high luminous efficiency of such diodes is challenging because of their internal structural properties such as micropores. Herein, we developed phosphor-in-glass (PiG) plates by mixing a blue LED chip and yellow phosphor to create high-power white LEDs (w-LEDs). In addition, the influence of post-annealing on the prepared PiG plates at different temperatures (350°C-550 °C) was investigated. Post-annealing, a treatment that facilitates the mobility of the ceramic matrix encapsulating the phosphor powder, decreases an LED's porosity, thereby enhancing its overall luminous efficiency. Results show that PiG plates post-annealed at 450 °C exhibit superior optical performance and effective color properties than PiG plates that were non-annealed or post-annealed at 350 °C, 400 °C, 500 °C, and 550 °C. Therefore, post-annealed PiG plates are more suitable potential materials for application in the high-power LED industry.  相似文献   

8.
Due to technological influence on the production process there are variations of the chromaticity coordinates that may cause visible differences of the perceived color of LEDs of the same production batch. To minimize the negative impact of such variations for the user the manufacturers carry out colorimetric measurements of LEDs and sort them into tolerance groups of similar chromaticity coordinates. The corresponding groups are defined by their respective center point surrounded by a quadrangular tolerance limit whereas the tolerance limits are based on tolerance ellipses gained in the 1940s by MacAdam. However, due to another scientific target of MacAdam's experiments, applying his ellipses as a base for grouping the chromaticity coordinates has to be questioned. With a view toward a method for grouping according to chromaticity coordinates for white LEDs with phosphor conversion, the results of research with test subjects regarding their discrimination and magnitude perception of chromatic differences are presented. In this research three chromaticities with the correlated color temperatures of 2700, 4000, and 6500 K and variations of color transitions are investigated, which match realistic luminaire designs for practical applications. The empirically determined thresholds are expanded according to the transformation to different chromatic adaptation conditions as per von Kries that are then compared to the results by MacAdam and the influence on adaptation is being discussed. A new concept for the calculation of tolerance limits for LED binning is presented. © 2015 Wiley Periodicals, Inc. Col Res Appl, 41, 457–467, 2016  相似文献   

9.
Here, we propose a color barrier‐free illumination consisting of white, red, and blue LEDs for people with deuteranopia‐type defects in color perception. Color perceptions of 20 volunteers with normal vision and four examinees of deuteranopia were evaluated by both the Ishihara test for color blindness and the Farnsworth Panel D‐15 test under color barrier‐free illumination. The illumination was comparably effective, not only for discriminating between red and green but also for discrimination of the hues on a color chip continuously. © 2014 Wiley Periodicals, Inc. Col Res Appl, 40, 218–223, 2015  相似文献   

10.
This study was performed to determine significant light wavelengths to improve color discrimination ability of subjects with deutan. We conducted both the Ishihara test and the Farnsworth Panel D‐15 test for subjects with deutan and normal color vision. Seven different LED lights from 450 to 660 nm and an additional D65 white lamp were utilized to change the lighting conditions, including the wavelength and intensity. The results of the Ishihara test and D‐15 test showed that color identification of deutans was markedly improved with the longer wavelength LEDs regardless of the intensity of the additional D65 lamp. Notably, the error rates of deutans in the Ishihara test were <25% for LED wavelengths of 630 and 660 nm. In the case of subjects with normal color vision, the D65 lamp abolished the errors in the Ishihara test, regardless of the LED wavelength. Addition of the D65 lamp also decreased the number of crossings in the D‐15 test. These results suggested that illumination by LED light with longer wavelengths, such as 630 and 660 nm, may provide deutans with greater red‐green discrimination ability in both the Ishihara test and the Farnsworth Panel D‐15 test. © 2016 Wiley Periodicals, Inc. Col Res Appl, 42, 424–430, 2017  相似文献   

11.
Fluorescent glass frits were prepared and used to synthesize phosphor‐in‐fluorescent glass composites (PiFGs) to realize stable white light emitting diodes with high color‐rendering properties. Commercial red, green, and blue phosphors were co‐sintered and red phosphors were partially replaced by Eu3+ in glass frits. Phosphor‐in‐glass composites were placed on UV‐light emitting diodes (UV‐LEDs) to generate white light. Pure white light with a luminous efficacy=58.4 lm/W, general color rendering index Ra=87 and special color rendering index for strong red R9=73 was realized with glass frits containing 7 mol% Eu2O3 and RGB ratio of 35:20:15. Luminous efficacy, Ra and R9 increased as red phosphors were replaced by red‐fluorescent glass frits.  相似文献   

12.
The effect of light quality on the performance a fixed‐film continuous‐flow photobioreactor for removal of hydrogen sulfide from synthetic industrial wastewater and conversion of it to elemental sulfur was investigated. Sixteen 150 mm long and 1.6 mm internal diameter (id) Tygon tubes formed the active part of the reactor. At the same light intensity, reactor performance in terms of optimal sulfide loading rates was compared between an infrared bulb and light emitting diodes (LEDs). The LEDs provided light within the peak absorption wavelength range of green sulfur bacteria (GSB) and were used as a light source for the GSB with the goal of reducing the cost of the required light. Though the reactor sustained higher sulfide loading rates using LEDs than when using an infrared bulb at equal light intensities, the infrared bulb has the potential to be more efficient overall. Copyright © 2004 Society of Chemical Industry  相似文献   

13.
Various white balance algorithms, based either on the Gray World assumption or on the Retinex theory, have been developed to remove the color cast of illumination in images. Though most man‐made white objects contain different amount of fluorescent whitening agents (FWAs) to enhance and create different degrees of whiteness appearance, the FWA excitation has seldom been considered in white balance algorithms. In this study, four illuminants, comprising 2 levels of CCT and 2 levels of UV/violet radiations, were produced to illuminate a setup, which included a Macbeth ColorChecker and a calibrated whiteness standard. Three whiteness standards containing different amount of FWAs were used under each illuminant, with one present each time. It was found the FWA excitation generally caused little color difference to the algorithms based on the Gray World assumption, which was likely due to the small size of the whiteness standard in the image. In contrast, the performance of the algorithms based on the Retinex theory was largely affected by the FWA excitation, as the FWA excitation affected the RGB values of the pixels for adjusting the gain factors. Given the wide usage of blue‐pumped white LEDs that contained little UV/violet radiation for enhancing luminous efficacy in general illumination, the impact of the FWAs is not trivial and should be considered in developing white balance algorithms.  相似文献   

14.
15.
An Sr2SiO4-Ba2SiO4 material system doped by Eu2+ was studied for light emitting diodes (LEDs) application. The main concern was the precise control of excitation and emission spectra for maximum light yield and color coordinate, which was carried out by changing the composition of the alkaline earth ions in host lattice. The Sr2SiO4 : Eu-Ba2SiO4 : Eu system was found to be excellent for white LED applications with excitation in the 380–465 nm region. Especially, the yellow light intensity from (Sr,Ba)SiO4 : Eu phosphors was comparable to YAG : Ce phosphors in case of blue LED excitation.  相似文献   

16.
A low sintering temperature glass based on the SiO2–P2O5–ZnO–B2O3–R2O (R=K and Na) system was studied as a matrix for embedding phosphors to fabricate color tunable white LEDs. The proposed system, which uses no heavy‐metal elements and can be sintered at 500°C, incorporates thermally weak commercial phosphors such as CaAlSiN3:Eu2+ to produce phosphor‐in‐glasses (PiGs). Changing the mixing ratio of glass to phosphors affected the photo‐luminescence spectra and color coordinates of the PiGs when mounted on a blue LED. The color rendering index (CRI) and color correlated temperature (CCT) of the LEDs were also varied with the mixing ratio, providing color tunable white LEDs. A high CRI, up to 93, as well as highly improved thermal stability were obtained, along with a low sintering temperature compared to other glass systems, suggesting the practical feasibility of the proposed system.  相似文献   

17.
In this research study, a comprehensive effort has been made to functionalize silicon carbide particles using the acidic oxidation with nitric acid to obtain homogeneous stabilized distribution of activated SiC particles within a polymer matrix, and develop functionalized silicon carbide (f-SiC) particle reinforced polyvinyl alcohol (PVA) based cross-linked composite. After fabrication of functionalized silicon carbide (f-SiC) particle reinforced polyvinyl alcohol based cross-linked composite with varying f-SiC weight percentages of PVA (0%, 1%, 2%, 3%, and 4%) were placed to various investigations. Processed samples are initially examined based by the physical tests (water absorption tests), followed by mechanical test (tensile test) and then micro-structural tests (scanning electron microscopy). Lastly, thermal tests were also concluded which involved the dynamic mechanical, differential thermal and thermo gravimetric analysis. The cross-linked polyvinyl alcohol-based composite with 2 weight % of f-SiC content is observed to be the superlative of all the compositions under this research study that was confirmed by the mechanical and micro-structural tests. This composite material shows high storage modulus with visco-elastic behavior, therefore, the material can be utilized to diminish the transmission of noise, as a shock absorber and vibration isolator.  相似文献   

18.
世界能源危机意识逐渐提升,各国均投入大量人力研发新颖的照明设备,而发展具有省电、低污染、发热量低、反应速度快、寿命长等优点的发光二极管(Light emitting diode;LED)作为光源,已是现代照明之发展趋势。文章系统介绍了长余辉磷光粉的各种制造方法,并结合其在固体照明,尤其是LED半导体照明中的应用作出了综述,并对今后该行业的发展作出了展望。  相似文献   

19.
Superior optical, thermal, and mechanical properties of transparent ceramics are very important in the applications of solid lasers, solid‐state lighting, and transparent armors. Herein, a series of (Dy0.03CexY0.97?x)3Al5O12 transparent ceramics were fabricated using vacuum reactive sintering method. Importantly, these Dy3+/Ce3+ codoped yttrium aluminum garnet (YAG) transparent ceramics served as single‐composition tunable white‐light phosphors for UV‐LEDs is developed for the first time. By combining with commercially available UV‐LEDs directly, the optimal chromaticity coordinates and correlated color temperature (CCT) are (x = 0.33, y = 0.35) and 5609 K, respectively. Notably, the codoping of Ce3+ enhances the luminescent intensity of Dy3+ ions while excited at 327 nm. The emission color of YAG transparent ceramics can be tuned from white to yellow through energy transfer between Dy3+ and Ce3+. These new phosphors, possessing of pure CIE chromaticity and environmentally friendly nature, are promising for applications in white UV‐LEDs.  相似文献   

20.
《Ceramics International》2015,41(4):5547-5553
To meet the challenges and additional requirements towards the development of white LED׳s with utmost efficacy, a sol–gel approach is adopted wherein a water soluble silicon compound is used as a silica source. The phosphor material obtained is subjected to detailed structural, morphological and luminescent studies. The results obtained show that the XRD patterns of Eu2+ doped CaSrSiO4 phosphors are in good agreement with the CaSrSiO4 (ICSD no. 49660) whose structure is orthorhombic. The output of the luminescence studies clearly portrays a broad yellow emission between 450 and 750 nm with a peak at ~600 nm under the broad excitation range. This confirms its efficient emission towards the development of a warm white light using blue LEDs. A red shift in the peak emission wavelength was observed for the prepared samples. This longer shift in wavelength can be credited to the sol–gel method adopted and is not offered by the conventional solid state reaction method. A warm white emitting LED was fabricated by combining near ultraviolet LED (400 nm) chip with our sol–gel synthesized CaSrSiO4:Eu2+ phosphor. The CIE chromaticity coordinates (0.44 and 0.41), color correlated temperature (CCT) <4000 K, color rendering index (CRI) >80 provide their emission potentiality in the warm white light region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号