首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
概述了InGaAs/GaAs异质结构材料用于制作微波器件的优越性,叙述了材料的MBE生长、输运特性和掺杂分布,以及用于制作Ku波段低噪声高增益HFET的结果:栅长0.5μm,12GHz下噪声系数0.93dB,相关增益9dB。  相似文献   

2.
Ion-implanted GaAs MESFETs with half-micrometer gate length have been fabricated on 3-in-diameter GaAs substrates. At 16 GHz, a minimum noise figure of 0.8 dB with an associated gain of 6.3 dB has been measured. This noise figure is believed to be the lowest ever reported for 0.5- and 0.25-μm ion-implanted MESFETs, and is comparable to that for 0.25-μm HEMTs at this frequency. By using the Fukui equation and the fitted equivalent circuit model, a Kf factor of 1.4 has been obtained. These results clearly demonstrate the potential of ion-implanted MESFET technology for K-band low-noise integrated circuit applications  相似文献   

3.
Fully ion-implanted low-noise GaAs MESFETs with a 0.11-μm Au/WSiN T-shaped gate have been successfully developed for applications in monolithic microwave and millimeter-wave integrated circuits (MMICs). In order to reduce the gate resistance, a wide Au gate head made of a first-level interconnect is employed. As the wide gate head results in parasitic capacitance, the relation between the gate head length (Lh) and the device performance is examined. The gate resistance is also precisely calculated using the cold FET technique and Mahon and Anhold's method. A current gain cutoff frequency (fT) and a maximum stable gain (MSG) decrease monotonously as Lh increases on account of parasitic capacitance. However, the device with Lh of 1.0 μm, which has lower gate resistance than 1.0 Ω, exhibits a noise figure of 0.78 dB with an associated gain of 8.7 dB at an operating frequency of 26 GHz. The measured noise figure is comparable to that of GaAs-based HEMT's  相似文献   

4.
An active image-rejection filter is presented in this paper, which applies actively coupled passive resonators. The filter has very low noise and high insertion gain, which may eliminate the use of a low-noise amplifier (LNA) in front-end applications. The GaAs monolithic-microwave integrated-circuit (MMIC) chip area is 3.3 mm2 . The filter has 12-dB insertion gain, 45-dB image rejection, 6.2-dB noise figure, and dissipates 4.3 mA from a 3-V supply. An MMIC mixer is also presented. The mixer applies two single-gate MESFETs on a 2.2-mm2 GaAs substrate. The mixer has 2.5-dB conversion gain and better than 8-dB single-sideband (SSB) noise figure with a current dissipation of 3.5 mA applying a single 5-V supply. The mixer exhibits very good local oscillator (LO)/RF and LO/IF isolation of better than 30 and 17 dB, respectively, Finally, the entire front-end, including the LNA, image rejection filter, and mixer functions is realized on a 5.7-mm 2 GaAs substrate. The front-end has a conversion gain of 15 dB and an image rejection of more than 53 dB with 0-dBm LO power. The SSB noise figure is better than 6.4 dB, The total power dissipation of the front-end is 33 mW. The MMIC's are applicable as a single-block LNA and image-rejection filter, mixer, and single-block front-end in digital European cordless telecommunications. With minor modifications, the MMIC's can be applied in other wireless communication systems working around 2 GHz, e.g., GSM-1800 and GSM-1900  相似文献   

5.
Fully ion-implanted n+ self-aligned GaAs MESFETs with high microwave and ultra-low-noise performance have been fabricated. T-shaped gate structures composed of Au/WSiN are employed to reduce gate resistance effectively. A very thin and high-quality channel with high carrier concentration can be formed by adopting the optimum annealing temperature for the channel, and the channel surface suffers almost no damage by using ECR plasma RIE for gate formation. GaAs MESFETs with a gate length as short as 0.35 μm demonstrated a maximum oscillation frequency of 76 GHz. At an operating frequency of 18 GHz, a minimum noise figure of 0.81 dB with an associated gain of 7.7 dB is obtained. A Kf factor of 1.4 estimated by Fukui's noise figure equation, which is comparable to those of AlGaAs/GaAs HEMTs with the same geometry, reveals that the quality of the channel is very high  相似文献   

6.
A design approach and accurate modeling techniques developed to realize a GaAs monolithic, 6-GHz, two-stage, low-noise amplifier (LNA) with a measured 1.7 dB noise figure and associated 21 dB gain are discussed. This self-biased LNA design, with chip dimensions of 80 mil×135 mil, utilizes an ion-implantation FET model which predicts measured in-band amplifier gain to within 0.5 dB and peak frequency response to within 4%. The derived noise parameter estimation process, which uses a Gaussian elimination technique to predict the measured noise figure to within 0.2 dB, reduces a set of complex, binomial equations to simple relationships which are easily programmable. A deep-recessed gate realization of this LNA design demonstrates that LNA low-noise performance is achievable under FET saturated drain current conditions  相似文献   

7.
The authors report on advanced ion implantation GaAs MESFET technology using a 0.25-μm `T' gate for super-low-noise microwave and millimeter-wave IC applications. The 0.25×200-μm-gate GaAs MESFETs achieved 0.56-dB noise figure with 13.1-dB associated gain at 50% IDSS and 0.6 dB noise figure with 16.5-dB associated gain at 100% IDSS at a measured frequency of 10 GHz. The measured noise figure is comparable to the best noise performance of AlGaAs/GaAs HEMTs and AlGaAs/InGaAs/GaAs pseudomorphic HEMTs  相似文献   

8.
The authors report the 60-GHz noise performance of low-noise ion-implanted InxGa1-xAs MESFETs with 0.25 μm T-shaped gates and amplifiers using these devices. The device noise figure was 2.8 dB with an associated gain of 5.6 dB at 60 GHz. A hybrid two-state amplifier using these ion-implanted InxGa1-x As MESFETs achieved a noise figure of 4.6 dB with an associated gain of 10.1 dB at 60 GHz. When this amplifier was biased at 100% I dss, it achieved 11.5-dB gain at 60 GHz. These results, achieved using low-cost ion-implantation techniques, are the best reported noise figures for ion-implanted MESFETs  相似文献   

9.
本文从栅源串联电阻R_s和有效栅长L_f两方面论述了深槽自对准斜蒸栅结构可明显减小R_s与缩短L_f,有利于降低器件的噪声系数。 本文还用相关栅长L_a和器件在低温下的性能说明GaAs材料的质量对器件噪声系数的影响。提高GaAs半绝缘衬底和缓冲层质量以及与有源层交界面附近的迁移率,可较明显地缩短相关栅长L_a,降低器件噪声。 采用这一器件结构,并选用质量较高的GaAs材料,制得的MESFET,在12GHz下相关增益G_a为7.5dB,噪声系数NF_(min)为1.4dB,与理论预计值相符。  相似文献   

10.
A 20-GHs band monolithic GaAs FET low-noise amplifier has been developed. Design and fabrication were performed by obtaining the transmission properties of the microstrip lines on a semi-insulating GaAs substrate. The developed monolithic amplifier consists of a submicron gate GaAs MESFET and the input and output distributed matching circuits on a semi-insulating GaAs substrate measuring 2.75 mm x 1.45 mm. A noise figure of 6.2dB and an associated gain of 7.5 dB were obtained at 21 GHz without any additional tuning adjustments.  相似文献   

11.
A T-shaped quarter-micron gate structure composed of WSix /Ti/Pt/Au has been developed for low-noise AlGaAs/GaAs HEMTs. The gate resistance Rg was reduced to 0.3 Ω for devices with 200 μm-wide gates despite using WSix, and the source resistance Rs reached 0.28 Ω mm by minimising the source-gate distance using a self-alignment technique. This HEMT exhibited the lowest reported noise figure of 0.54 dB with an associated gain of 12.1 dB at 12 GHz  相似文献   

12.
本文叙述了12GHz低噪声GaAs MESFET的设计和制造.用普通光刻技术制成了高性能GaAs MESFET.在12GHz下测得器件最小噪声系数为1.4dB,相关增益7.5dB.  相似文献   

13.
The authors discuss the development of 110-120-GHz monolithic low-noise amplifiers (LNAs) using 0.1-mm pseudomorphic AlGaAs/InGaAs/GaAs low-noise HEMT technology. Two 2-stage LNAs have been designed, fabricated, and tested. The first amplifier demonstrates a gain of 12 dB at 112 to 115 GHz with a noise figure of 6.3 dB when biased for high gain, and a noise figure of 5.5 dB is achieved with an associated gain of 10 dB at 113 GHz when biased for low-noise figure. The other amplifier has a measured small-signal gain of 19.6 dB at 110 GHz with a noise figure of 3.9 dB. A noise figure of 3.4 dB with 15.6-dB associated gain was obtained at 113 GHz. The authors state that the small-signal gain and noise figure performance for the second LNA are the best results ever achieved for a two-stage HEMT amplifier at this frequency band  相似文献   

14.
We report the first demonstration of W-band metamorphic HEMTs/LNA MMICs using an AlGaAsSb lattice strain relief buffer layer on a GaAs substrate. 0.1×50 μm low-noise devices have shown typical extrinsic transconductance of 850 mS/mm with high maximum drain current of 700 mA/mm and gate-drain breakdown voltage of 4.5 V. Small-signal S-parameter measurements performed on the 0.1-μm devices exhibited an excellent fT of 225 GHz and maximum stable gain (MSG) of 12.9 dB at 60 GHz and 10.4 dB at 110 GHz. The three-stage W-band LNA MMIC exhibits 4.2 dB noise figure with 18 dB gain at 82 GHz and 4.8 dB noise figure with 14 dB gain at 89 GHz, The gain and noise performance of the metamorphic HEMT technology is very close to that of the InP-based HEMT  相似文献   

15.
The design and test of an X-band monolithic four-stage low-noise amplifier (LNA) with 0.5 μm-gate pulse-doped GaAs MESFETs for application in a direct broadcast satellite (DBS) converter is presented. The key feature of the research is a detailed demonstration of the advantages of using series feedback with experiments and simulations. This LNA shows an excellent input VSWR match under 1.4 as well as a noise figure of 1.67 dB and a gain of 24 dB at 12 GHz. The noise figure, the gain and VSWRs exhibit very little bias current dependence due to the exceptional features of the pulse-doped structure FETs and the optimized circuit design. Insensitivity to bias current implies performance stability in the face of process fluctuations. Thus, the yield of chips with noise figures of less than 2.0 dB is as high as 62.5%, and the variations of gain and VSWR are highly uniform as well  相似文献   

16.
报道了8~16GHzGaAs单片宽带分布放大器的设计与制作。单级MMIC电路采用三个栅宽为280μm的GaAsMESFET作为有源器件,芯片尺寸为1.1mm×1.6mm。在8~16GHz频率范围,用管壳封装的两级级联放大器增益G_a,为11.3±1dB,噪声系数F_n<6dB,输出功率P_(1dB)>16dBm。  相似文献   

17.
Super low-nose GaAs MESFETs have been fabricated using direct ion implantation into undoped LEC substrates. Microwave results at 12 GHz include a noise figure of 1.3 dB, with an associated gain of 10.3 dB and a maximum available gain of 14.9 dB.  相似文献   

18.
A miniaturized receiver front-end hybrid IC (HIC) using MBB (microbump bonding) technology has been demonstrated. A GaAs IC die was dip-chip bonded on a ceramic substrate with matching circuits on its surface. New technologies such as 0.5 μm gate buried p-layer MESFETs, on-chip high-dielectric constant capacitors, and intermediate tuned circuits have enabled miniaturization and low power-consumption at the same time. The fabricated HIC measured only 3.5×4.0×1.0 mm which corresponded to a 64% reduction from the conventional one. Conversion gain of 16.0 dB, IP3 out of 0 dBm, noise figure of 5.1 dB, and image rejection ratio over 20 dBc were obtained for the new HIC at 1.9 GHz, 3.0 V, and 4.5 mA of power supply  相似文献   

19.
GaAs monolithic microwave integrated circuits (MMICs) with very low current and of very small size have been developed for L-band front-end applications. The MMICs fully employ lumped LC elements with uniplanar configurations. There are two kinds of MMICs: a low-noise amplifier and a mixer. The low-noise amplifier has a noise figure of 2.5 dB and a gain of 11.5 dB. The mixer has a conversion gain of 12.5 dB small local oscillator (LO) power of -3 dBm. Total current dissipation of the two MMICs is less than 8 mA with 3-V drain bias voltages  相似文献   

20.
The effectiveness of the two-tier matrix amplifier as a very-low-noise device with very high associated gains across multioctave frequency bands is theoretically and experimentally demonstrated. Experimental modules whose topology is based on a computer-optimized design exhibit an average noise figure of F=3.5 dB with an associated average gain of G=17.8 dB across the 2-18 GHz frequency band. These state-of-the-art results were achieved with GaAs MESFETs whose minimum noise figure is F=2.2 dB at 18 GHz and whose gate dimensions are 0.25×200 μm. The design considerations and the test results are discussed in detail  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号