首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In a ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO)-deficient mutant of Rhodobacter sphaeroides, strain 16PHC, nitrogenase activity was derepressed in the presence of ammonia under photoheterotrophic growth conditions. Previous studies also showed that reintroduction of a functional RubisCO and Calvin-Benson-Bassham (CBB) pathway suppressed the deregulation of nitrogenase synthesis in this strain. In this study, the derepression of nitrogenase synthesis in the presence of ammonia in strain 16PHC was further explored by using a glnB::lacZ fusion, since the product of the glnB gene is known to have a negative effect on ammonia-regulated nif control. It was found that glnB expression was repressed in strain 16PHC under photoheterotrophic growth conditions with either ammonia or glutamate as the nitrogen source; glutamine synthetase (GS) levels were also affected in this strain. However, when cells regained a functional CBB pathway by trans complementation of the deleted genes, wild-type levels of GS and glnB expression were restored. Furthermore, a glnB-like gene, glnK, was isolated from this organism, and its expression was found to be under tight nitrogen control in the wild type. Surprisingly, glnK expression was found to be derepressed in strain 16PHC under photoheterotrophic conditions in the presence of ammonia.  相似文献   

2.
3.
Ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) was purified from an obligately autotrophic hydrogen-oxidizing bacterium, Hydrogenovibrio marinus MH-110. The protein has a M(r) value of approximately 110,000, and is composed of two identical subunits of 55,000. To our knowledge, the existence of L2-form RubisCO in a chemolithoautotrophic bacterium is first reported in this paper. The N-terminal amino acid sequence determination of the purified enzyme showed high homology with those of the L2-form RubisCO of Rhodospirillum rubrum and the Lx-form RubisCO from Rhodobacter sphaeroides.  相似文献   

4.
5.
6.
7.
We previously reported the construction of Marek's disease virus (MDV) strains having mutations in various genes that map to the unique short (US) region of the viral genome (J.L. Cantello, A.S. Anderson, A. Francesconi, and R.W. Morgan, J. Virol. 65:1584-1588, 1991; M.S. Parcells, A.S. Anderson, and R.W. Morgan, Virus Genes 9:5-13, 1994; M.S. Parcells, A.S. Anderson, and R.W. Morgan, J. Virol. 68:8239-8253, 1994). These strains were constructed by using a high-passage-level serotype 1 MDV strain which grew well in chicken embryo fibroblasts. Despite the growth of the parent and mutant viruses in cell culture, in vivo studies were limited by poor growth of these strains in chickens. One of the mutants studied lacked 4.5 kbp of US region DNA and contained the lacZ gene of Escherichia coli inserted at the site of the deletion. The deletion removed MDV homologs to the US1, US2, and US10 genes of herpes simplex virus type 1 as well as three MDV-specific open reading frames. We now report the construction of a mutant MDV containing a similar deletion in the US region of the highly oncogenic RB1B strain. This mutant, RB1B delta 4.5lac, had a growth impairment in established chicken embryo fibroblasts similar to that described previously for MDVs lacking a functional US1 gene. In chickens, RB1B delta 4.5lac showed decreased early cytolytic infection, mortality, tumor incidence, and horizontal transmission. Several lymphoblastoid cell lines were established from RB1B delta 4.5lac-induced tumors, and virus reactivated from these cell lines was LacZ+. These results indicate that the deleted genes are nonessential for the transformation of chicken T cells or for the establishment and maintenance of latency. On the basis of the growth impairment observed for RB1B delta 4.5lac in cell culture and in vivo, we conclude that deletion of these genes affects the lytic replication of MDV. This is the first MDV mutant constructed in the RB1B oncogenic strain, and the methodology described herein provides for the direct examination of MDV-encoded determinants of oncogenicity.  相似文献   

8.
Filamentous cyanobacteria of the genus Anabaena contain a unique open reading frame, rbcX, which is juxtaposed and cotranscribed with the genes (rbcL and rbcS) encoding form I ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO). Plasmid constructions containing the genes from Anabaena sp. strain CA were prepared, and expression studies in Escherichia coli indicated that the product of the rbcX gene mimicked the ability of chaperonin proteins to facilitate the proper folding of recombinant RubisCO proteins. The purified recombinant Anabaena sp. strain CA RubisCO, much like the RubisCO enzymes from other cyanobacteria, was shown not to undergo inhibition of activity during a time course experiment, and the properties of this chaperoned recombinant protein appear to be consistent with those of the enzyme isolated from the native organism.  相似文献   

9.
In Rhodobacter sphaeroides, cytochrome c2 (cyt c2)-deficient mutants are photosynthetically incompetent (PS-). However, mutations which suppress the photosynthetic deficiency (spd mutations) of cyt c2 mutants increase the levels of a cyt c2 isoform, isocyt c2. To determine whether isocyt c2 was required for photosynthetic growth of Spd mutants, we used Tn5 mutagenesis to generate a PS- mutant (TP39) that lacks both cyt c2 and isocyt c2. DNA sequence analysis of wild-type DNA that restores isocyt c2 production and photosynthetic growth to TP39 indicates that it encodes the isocyt c2 structural gene, cycI. The Tn5 insertion in TP39 is approximately 1.5 kb upstream of cycI, and our results show that it is polar onto cycI. The cycI gene has been physically mapped to a region of chromosome I that is approximately 700 kb from the R. sphaeroides photosynthetic gene cluster. Construction of a defined cycI null mutant and complementation of several mutants with the cycI gene under the control of the cyt c2 promoter region indicate that an increase in the levels of isocyt c2 alone is necessary and sufficient for photosynthetic growth in the absence of cyt c2. The data are discussed in terms of the obligate role of isocyt c2 in cyt c2-independent photosynthesis of R. sphaeroides.  相似文献   

10.
The sequences controlling the expression of the Rhodobacter capsulatus recA and uvrA genes belonging to the SOS DNA repair system have been identified by PCR mutagenesis. Data obtained demonstrated that the GTTCN7GTAC and GAACN7GAAC motifs present upstream of the recA gene and the GTTCN7GTTC motif found upstream of the uvrA gene are required for their respective DNA damage-mediated induction. Alignment of recA promoters of R. capsulatus, Rhodobacter sphaeroides and Rhodopseudomonas viridis with the uvrA promoters of R. capsulatus and R. sphaeroides has identified the consensus sequence GTTCVYVYTWTGTTC as the SOS operator site of the Rhodospirillaceae family.  相似文献   

11.
12.
13.
14.
Little is known of the biological attributes conferring pathogenicity on the opportunistic fungal pathogen Candida albicans. Infection by this pathogen, as for bacterial pathogens, may rely upon environmental signals within the host niche to regulate the expression of virulence determinants. To determine if C. albicans responds to the pH of the host niche, we tested the virulence of strains with mutations in either of two pH-regulated genes, PHR1 and PHR2. In vitro, PHR1 is expressed when the ambient pH is at 5.5 or higher and deletion of the gene results in growth and morphological defects at neutral to alkaline pHs. Conversely, PHR2 is expressed at an ambient pH below 5.5, and the growth and morphology of the null mutant is compromised below this pH. A PHR1 null mutant was avirulent in a mouse model of systemic infection but uncompromised in its ability to cause vaginal infection in rats. Since systemic pH is near neutrality and vaginal pH is around 4.5, the virulence phenotype paralleled the pH dependence of the in vitro phenotypes. The virulence phenotype of a PHR2 null mutant was the inverse. The mutant was virulent in a systemic-infection model but avirulent in a vaginal-infection model. Heterozygous mutants exhibited partial reductions in their pathogenic potential, suggesting a gene dosage effect. Unexpectedly, deletion of PHR2 did not prevent hyphal development in vaginal tissue, suggesting that it is not essential for hyphal development in this host niche. The results suggest that the pH of the infection site regulates the expression of genes essential to survival within that niche. This implies that the study of environmentally regulated genes may provide a rationale for understanding the pathobiology of C. albicans.  相似文献   

15.
16.
17.
The zinc-finger proteins ZFX and ZFY, encoded by genes on the mammalian X and Y chromosomes, have been speculated to function in sex differentiation, spermatogenesis, and Turner syndrome. We derived Zfx mutant mice by targeted mutagenesis. Mutant mice (both males and females) were smaller, less viable, and had fewer germ cells than wild-type mice, features also found in human females with an XO karyotype (Turner syndrome). Mutant XY animals were fully masculinized, with testes and male genitalia, and were fertile, but sperm counts were reduced by one half. Homozygous mutant XX animals were fully feminized, with ovaries and female genitalia, but showed a shortage of oocytes resulting in diminished fertility and shortened reproductive lifespan, as in premature ovarian failure in humans. The number of primordial germ cells was reduced in both XX and XY mutant animals at embryonic day 11.5, prior to gonadal sex differentiation. Zfx mutant animals exhibited a growth deficit evident at embryonic day 12.5, which persisted throughout postnatal life and was not complemented by the Zfy genes. These phenotypes provide the first direct evidence for a role of Zfx in growth and reproductive development.  相似文献   

18.
19.
The yeast two-hybrid system and far-Western protein blot analysis were used to demonstrate dimerization of human double-stranded RNA (dsRNA)-dependent protein kinase (PKR) in vivo and in vitro. A catalytically inactive mutant of PKR with a single amino acid substitution (K296R) was found to dimerize in vivo, and a mutant with a deletion of the catalytic domain of PKR retained the ability to dimerize. In contrast, deletion of the two dsRNA-binding motifs in the N-terminal regulatory domain of PKR abolished dimerization. In vitro dimerization of the dsRNA-binding domain required the presence of dsRNA. These results suggest that the binding of dsRNA by PKR is necessary for dimerization. The mammalian dsRNA-binding protein TRBP, originally identified on the basis of its ability to bind the transactivation region (TAR) of human immunodeficiency virus RNA, also dimerized with itself and with PKR in the yeast assay. Taken together, these results suggest that complexes consisting of different combinations of dsRNA-binding proteins may exist in vivo. Such complexes could mediate differential effects on gene expression and control of cell growth.  相似文献   

20.
The large subunit of herpes simplex virus (HSV) ribonucleotide reductase (RR), RR1, contains a unique amino-terminal domain which has serine/threonine protein kinase (PK) activity. To examine the role of the PK activity in virus replication, we studied an HSV type 2 (HSV-2) mutant with a deletion in the RR1 PK domain (ICP10DeltaPK). ICP10DeltaPK expressed a 95-kDa RR1 protein (p95) which was PK negative but retained the ability to complex with the small RR subunit, RR2. Its RR activity was similar to that of HSV-2. In dividing cells, onset of virus growth was delayed, with replication initiating at 10 to 15 h postinfection, depending on the multiplicity of infection. In addition to the delayed growth onset, virus replication was significantly impaired (1,000-fold lower titers) in nondividing cells, and plaque-forming ability was severely compromised. The RR1 protein expressed by a revertant virus [HSV-2(R)] was structurally and functionally similar to the wild-type protein, and the virus had wild-type growth and plaque-forming properties. The growth of the ICP10DeltaPK virus and its plaque-forming potential were restored to wild-type levels in cells that constitutively express ICP10. Immediate-early (IE) genes for ICP4, ICP27, and ICP22 were not expressed in Vero cells infected with ICP10DeltaPK early in infection or in the presence of cycloheximide, and the levels of ICP0 and p95 were significantly (three- to sevenfold) lower than those in HSV-2- or HSV-2(R)-infected cells. IE gene expression was similar to that of the wild-type virus in cells that constitutively express ICP10. The data indicate that ICP10 PK is required for early expression of the viral regulatory IE genes and, consequently, for timely initiation of the protein cascade and HSV-2 growth in cultured cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号