首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
甲型肝炎病毒吕8株的快速适应性培养   总被引:2,自引:1,他引:2  
用12天35℃初步适应培育出一株在KMB17细胞稳定传代、感染性滴度高、增殖周期短的HAV适应株LU8株,其感染性滴度为108.33TCID50/ml,抗原滴度为1:1024,一步生长曲线试验和免疫电镜观察结果表明12天为该株病毒增殖高峰。LUB株和H2减毒株HAV经纯化和灭活后接种豚鼠,第一次接种后4周血清HAV抗体均阳转,第二次接种后滴度为1:13.5和1:4.8(GMT),第三次接种后滴度增至1:16和1:8。提示LUB株抗原性较H2株强。  相似文献   

3.
4.
甲型肝炎灭活疫苗的研制   总被引:1,自引:1,他引:1  
甲型肝炎病毒8347毒株在人二倍体细胞(2BS株)中增殖4周,收获的病毒液经冻融、超声、过滤.德液用1:4000福尔马林、37℃灭活6天以上制成灭活疫苗,病毒灭括前的滴度(TCID50/ml)至少可达6.5左右.疫苗免疫豚鼠和小鼠三针后,75%~100%的动物甲肝抗体阳转。经超声处理后疫苗免疫原住可大幅度提高,三针后动物血清中的中和抗体效价可达1:20以上.  相似文献   

5.
丙型肝炎病毒(Hepatitis C virus,HCV)属于黄病毒科,是有包膜的单正链RNA病毒.HCV基因组约有9 600个碱基,编码的单一开放读码框(Open reading frame,ORF)翻译出约3 000个氨基酸残基的多聚蛋白前体,在宿主细胞及病毒蛋白酶的作用下,剪切成至少10种结构蛋白和非结构蛋白.近...  相似文献   

6.
Hepatitis C virus (HCV) infection remains a major global health burden, causing chronic hepatitis, cirrhosis, and hepatocellular carcinoma. Toll-like receptors (TLRs) are evolutionarily conserved pattern recognition receptors that detect pathogen-associated molecular patterns and activate downstream signaling to induce proinflammatory cytokine and chemokine production. An increasing number of studies have suggested the importance of TLR responses in the outcome of HCV infection. However, the exact role of innate immune responses, including TLR response, in controlling chronic HCV infection remains to be established. A proper understanding of the TLR response in HCV infection is essential for devising new therapeutic approaches against HCV infection. In this review, we discuss the progress made in our understanding of the host innate immune response to HCV infection, with a particular focus on the TLR response. In addition, we discuss the mechanisms adopted by HCV to avoid immune surveillance mediated by TLRs.  相似文献   

7.
8.
9.
Hepatitis A virus (HAV) infection is a major cause of acute hepatitis worldwide and occasionally causes acute liver failure and can lead to death in the absence of liver transplantation. Although HAV vaccination is available, the prevalence of HAV vaccination is not adequate in some countries. Additionally, the improvements in public health reduced our immunity to HAV infection. These situations motivated us to develop potentially new anti-HAV therapeutic options. We carried out the in silico screening of anti-HAV compounds targeting the 3C protease enzyme using the Schrodinger Modeling software from the antiviral library of 25,000 compounds to evaluate anti-HAV 3C protease inhibitors. Additionally, in vitro studies were introduced to examine the inhibitory effects of HAV subgenomic replicon replication and HAV HA11-1299 genotype IIIA replication in hepatoma cell lines using luciferase assays and real-time RT-PCR. In silico studies enabled us to identify five lead candidates with optimal binding interactions in the active site of the target HAV 3C protease using the Schrodinger Glide program. In vitro studies substantiated our hypothesis from in silico findings. One of our lead compounds, Z10325150, showed 47% inhibitory effects on HAV genotype IB subgenomic replicon replication and 36% inhibitory effects on HAV genotype IIIA HA11-1299 replication in human hepatoma cell lines, with no cytotoxic effects at concentrations of 100 μg/mL. The effects of the combination therapy of Z10325150 and RNA-dependent RNA polymerase inhibitor, favipiravir on HAV genotype IB HM175 subgenomic replicon replication and HAV genotype IIIA HA11-1299 replication showed 64% and 48% inhibitory effects of HAV subgenomic replicon and HAV replication, respectively. We identified the HAV 3C protease inhibitor Z10325150 through in silico screening and confirmed the HAV replication inhibitory activity in human hepatocytes. Z10325150 may offer the potential for a useful HAV inhibitor in severe hepatitis A.  相似文献   

10.
11.
In inflammatory bone diseases such as periodontitis, the nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain-containing 3 (NLRP3) inflammasome accelerates bone resorption by promoting proinflammatory cytokine IL-1β production. However, the role of the NLRP3 inflammasome in physiological bone remodeling remains unclear. Here, we investigated its role in osteoclastogenesis in the presence and absence of lipopolysaccharide (LPS), a Gram-negative bacterial component. When bone marrow macrophages (BMMs) were treated with receptor activator of nuclear factor-κB ligand (RANKL) in the presence of NLRP3 inflammasome inhibitors, osteoclast formation was promoted in the absence of LPS but attenuated in its presence. BMMs treated with RANKL and LPS produced IL-1β, and IL-1 receptor antagonist inhibited osteoclastogenesis, indicating IL-1β involvement. BMMs treated with RANKL alone produced no IL-1β but increased reactive oxygen species (ROS) production. A ROS inhibitor suppressed apoptosis-associated speck-like protein containing a caspase-1 recruitment domain (ASC) speck formation and NLRP3 inflammasome inhibitors abrogated cytotoxicity in BMMs treated with RANKL, indicating that RANKL induces pyroptotic cell death in BMMs by activating the NLRP3 inflammasome via ROS. This suggests that the NLRP3 inflammasome promotes osteoclastogenesis via IL-1β production under infectious conditions, but suppresses osteoclastogenesis by inducing pyroptosis in osteoclast precursors under physiological conditions.  相似文献   

12.
A universal vaccination program among preadolescents was implemented in Catalonia, Spain, during the period of 1999–2013 and its effectiveness has been clearly demonstrated by an overall significant attack rate reduction. However, reductions were not constant over time, and increases were again observed in 2002–2009 due to the occurrence of huge outbreaks. In the following years, in the absence of large outbreaks, the attack rate decreased again to very low levels. However, an increase of symptomatic cases in the <5 age group has recently been observed. This is an unexpected observation since children younger than 6 are mostly asymptomatic. Such a long vaccination campaign offers the opportunity to analyze not only the effectiveness of vaccination, but also the influence of the circulating genotypes on the incidence of hepatitis A among the different age groups. This study has revealed the emergence of genotype IC during a foodborne outbreak, the short-lived circulation of vaccine-escape variants isolated during an outbreak among the men-having-sex-with-men group, and the association of genotype IIIA with the increase of symptomatic cases among the very young. From a public health perspective, two conclusions may be drawn: vaccination is better at an early age, and the vaccination schedule must be complete and include all recommended vaccine doses.  相似文献   

13.
目的构建以乙型肝炎病毒核心蛋白(Hepatitis B virus coreprotein,HBc)颗粒为载体的含流感病毒M2基质蛋白胞外功能区(M2 ectodomain,M2e)和核蛋白(Nucleoprotein,NP)保守表位的流感通用疫苗,评价其抗不同亚型流感病毒感染的保护作用。方法采用基因工程方法将流感病毒M2e的3拷贝重复片段与NP的CTL表位串联,插入HBc刺突顶端的免疫优势决定区,构建重组表达质粒pET-21a-HBc-3M2e-NP,转化大肠杆菌BL21(DE3),IPTG16℃低温诱导表达。表达的融合蛋白HBc-3M2e-NP经纯化后,电镜观察病毒样颗粒形成情况。纯化的融合蛋白分别经鼻腔和腹腔免疫小鼠,对照组注射等体积的PBS,间接ELISA法检测小鼠血清IgG抗体水平;流式细胞术检测小鼠脾组织中CD4+、CD8+T淋巴细胞水平;以流感病毒攻毒,检测融合蛋白的保护效果。结果重组表达质粒pET-21a-HBc-3M2e-NP经PCR及双酶切鉴定证明构建正确。表达的融合蛋白相对分子质量约为29000,以包涵体和可溶性两种形式表达,且可与鼠抗M2e单抗发生特异性反应。纯化的融合蛋白纯度大于90%,且能够自动装配成病毒样颗粒。用该病毒样颗粒免疫小鼠,可诱导小鼠产生针对不同流感病毒毒株的特异性抗体;2种途径免疫的小鼠脾组织中CD4+T淋巴细胞含量和CD4+/CD8+T淋巴细胞比例均较对照组明显升高;攻毒试验结果显示,具有交叉保护作用。结论构建的流感通用疫苗能够诱导机体产生高水平的体液免疫和细胞免疫应答及有效的交叉保护作用,为流感通用疫苗的深入研究奠定了基础。  相似文献   

14.
目的探讨丙型肝炎病毒(Hepatitis C virus,HCV)2a FL-J6JFH NS5A基因置换对1b型HC-J4复制和感染性的影响,为建立HCV 1b细胞模型奠定基础。方法将JFH1 NS5A置换至HC-J4基因组内,构建嵌合全长基因组HC-J4/JFHNS-5A。体外制备野生型HC-J4、嵌合体及FL-J6JFH的RNA转录体,脂质体介导转染Huh-7.5细胞,采用间接免疫荧光法(IFA)检测转染细胞内的蛋白表达,HCV负链RNA特异性RT-PCR法和荧光定量PCR方法(FQ-PCR)检测基因复制情况。转染后不同时间收集转染细胞上清,感染naive Huh-7.5细胞,观察其感染性。结果 IFA未观察到野生型HC-J4和嵌合体转染细胞内HCV蛋白的表达,但在转染后18 d内的各个时间点,均检测到HCV负链RNA,表明嵌合体和野生型HC-J4在转染细胞内呈低水平复制。转染后第9天和12天,FQ-PCR检测表明,嵌合体转染细胞内HCV RNA水平明显高于野生型转染的细胞(P<0.05)。不同时间点转染细胞上清感染naive Huh-7.5细胞后,IFA均未观察到表达HCV蛋白的阳性细胞。结论 JFH1 NS5A蛋白虽然在一定程度上可提高1b型HC-J4株在体外培养细胞中的复制能力,但还不足以产生能够检测到的感染性病毒颗粒。HCV 1b细胞模型的建立尚受其他因素的影响。  相似文献   

15.
16.
Necroptosisis a regulatory programmed form of necrosis. Receptor interacting protein kinase 3 (RIPK3) is a robust indicator of necroptosis. RIPK3 mediates myocardial necroptosis through activation of calcium/calmodulin-dependent protein kinase II (CaMKII) in cardiac ischemia-reperfusion (I/R) injury and heart failure. However, the exact mechanism of RIPK3 in advanced glycation end products (AGEs)-induced cardiomyocytes necroptosis is not clear. In this study, cardiomyocytes were subjected to AGEs stimulation for 24 h. RIPK3 expression, CaMKII expression, and necroptosis were determined in cardiomyocytes after AGEs stimulation. Then, cardiomyocytes were transfected with RIPK3 siRNA to downregulate RIPK3 followed by AGEs stimulation for 24 h. CaMKIIδ alternative splicing, CaMKII activity, oxidative stress, necroptosis, and cell damage were detected again. Next, cardiomyocytes were pretreated with GSK′872, a specific RIPK3 inhibitor to assess whether it could protect cardiomyocytes against AGEs stimulation. We found that AGEs increased the expression of RIPK3, aggravated the disorder of CaMKII δ alternative splicing, promoted CaMKII activation, enhanced oxidative stress, induced necroptosis, and damaged cardiomyocytes. RIPK3 downregulation or RIPK3 inhibitor GSK′872 corrected CaMKIIδ alternative splicing disorder, inhibited CaMKII activation, reduced oxidative stress, attenuated necroptosis, and improved cell damage in cardiomyocytes.  相似文献   

17.
The nonstructural protein 3 (NS3) from the hepatitis C virus (HCV) is responsible for processing the non-structural region of the viral precursor polyprotein in infected hepatic cells. NS3 protease activity, located at the N-terminal domain, is a zinc-dependent serine protease. A zinc ion, required for the hydrolytic activity, has been considered as a structural metal ion essential for the structural integrity of the protein. In addition, NS3 interacts with another cofactor, NS4A, an accessory viral protein that induces a conformational change enhancing the hydrolytic activity. Biophysical studies on the isolated protease domain, whose behavior is similar to that of the full-length protein (e.g., catalytic activity, allosteric mechanism and susceptibility to inhibitors), suggest that a considerable global conformational change in the protein is coupled to zinc binding. Zinc binding to NS3 protease can be considered as a folding event, an extreme case of induced-fit binding. Therefore, NS3 protease is an intrinsically (partially) disordered protein with a complex conformational landscape due to its inherent plasticity and to the interaction with its different effectors. Here we summarize the results from a detailed biophysical characterization of this enzyme and present new experimental data.  相似文献   

18.
The twofold role of autophagy in cancer is often the therapeutic target. Numerous regulatory pathways are shared between autophagy and other molecular processes needed in tumorigenesis, such as translation or survival signaling. Thus, we have assumed that ILK knockdown should promote autophagy, and used together with chloroquine, an autophagy inhibitor, it could generate a better anticancer effect by dysregulation of common signaling pathways. Expression at the protein level was analyzed using Western Blot; siRNA transfection was done for ILK. Analysis of cell signaling pathways was monitored with phospho-specific antibodies. Melanoma cell proliferation was assessed with the crystal violet test, and migration was evaluated by scratch wound healing assays. Autophagy was monitored by the accumulation of its marker, LC3-II. Our data show that ILK knockdown by siRNA suppresses melanoma cell growth by inducing autophagy through AMPK activation, and simultaneously initiates apoptosis. We demonstrated that combinatorial treatment of melanoma cells with CQ and siILK has a stronger antitumor effect than monotherapy with either of these. It generates the synergistic antitumor effects by the decrease of translation of both global and oncogenic proteins synthesis. In our work, we point to the crosstalk between translation and autophagy regulation.  相似文献   

19.
Although the causes of Multiple Sclerosis (MS) still remain largely unknown, multiple lines of evidence suggest that Epstein–Barr virus (EBV) infection may contribute to the development of MS. Here, we aimed to identify the potential contribution of EBV-encoded and host cellular miRNAs to MS pathogenesis. We identified differentially expressed host miRNAs in EBV infected B cells (LCLs) and putative host/EBV miRNA interactions with MS risk loci. We estimated the genotype effect of MS risk loci on the identified putative miRNA:mRNA interactions in silico. We found that the protective allele of MS risk SNP rs4808760 reduces the expression of hsa-mir-3188-3p. In addition, our analysis suggests that hsa-let-7b-5p may interact with ZC3HAV1 differently in LCLs compared to B cells. In vitro assays indicated that the protective allele of MS risk SNP rs10271373 increases ZC3HAV1 expression in LCLs, but not in B cells. The higher expression for the protective allele in LCLs is consistent with increased IFN response via ZC3HAV1 and so decreased immune evasion by EBV. Taken together, this provides evidence that EBV infection dysregulates the B cell miRNA machinery, including MS risk miRNAs, which may contribute to MS pathogenesis via interaction with MS risk genes either directly or indirectly.  相似文献   

20.
Influenza (IAV) neuraminidase (NA) is a glycoprotein required for the viral exit from the cell. NA requires disulfide bonds for proper function. We have recently demonstrated that protein disulfide isomerase (PDI)A3 is required for oxidative folding of IAV hemagglutinin (HA), and viral propagation. However, it not known whether PDIs are required for NA maturation or if these interactions represent a putative target for the treatment of influenza infection. We sought to determine whether PDIA3 is required for disulfide bonds of NA, its activity, and propagation of the virus. Requirement of disulfides for NA oligomerization and activity were determined using biotin switch and redox assays in WT and PDIA3−/− in A549 cells. A PDI specific inhibitor (LOC14) was utilized to determine the requirement of PDIs in NA activity, IAV burden, and inflammatory response in A549 and primary mouse tracheal epithelial cells. Mice were treated with the inhibitor LOC14 and subsequently examined for IAV burden, NA activity, cytokine, and immune response. IAV-NA interacts with PDIA3 and this interaction is required for NA activity. PDIA3 ablation or inhibition decreased NA activity, viral burden, and inflammatory response in lung epithelial cells. LOC14 treatment significantly attenuated the influenza-induced inflammatory response in mice including the overall viral burden. These results provide evidence for PDIA3 inhibition suppressing NA activity, potentially providing a novel platform for host-targeted antiviral therapies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号