首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study, effect of hybridization on the hybrid composite armors under ballistic impact is investigated using hydrocode simulations. The hybrid composite armor is constructed using various combinations and stacking sequences of fiber reinforced composites having woven form of fibers specifically high specific-modulus/high specific-strength Kevlar fiber (KF), tough, high strain-to-failure fiber Glass fiber (GF) and high strength/high stiffness Carbon fiber (CF). Different combinations of composite armors studied are KF layer in GF laminate, GF layer in KF laminate, KF layer in CF laminate and CF layer in KF laminate at various positions of hybridized layers for a fixed thickness of the target. In this article the results obtained from the finite element model are validated for the case of KF layer in a GF laminate with experimental predictions reported in the literature in terms of energy absorption and residual velocity and good agreement is observed. Further, the effect of stacking sequence, projectile geometry and target thickness on the ballistic limit velocity, energy absorbed by the target and the residual velocity are presented for different combinations of hybrid composite armors. The simulations show that, at a fixed thickness of the hybrid composite armor, stacking sequence of hybridized layer shows significant effect on the ballistic performance. The results also indicate energy absorption and ballistic limit velocity are sensitive to projectile geometry. Specifically, it is found that arranging the KF layer at the rear side, GF layer in the exterior and CF layer on the front side offers good ballistic impact resistance. The hybrid composite armor consisting of a CF layer in KF laminate acquires maximum impact resistance and is the best choice for the design compared to that of other combinations studied.  相似文献   

2.
Over last few decades, Al-based metal matrix composites (MMCs) have become a promising material of choice for lightweight armors in vehicles. Recent development in ultra-fine-grain and nanostructured material technology provides a new opportunity for the substantial strength enhancement of MMCs unattainable with the conventional microstructure of microscale, leading to significant weight reduction in armor packages. In this article, we will present the latest development of a novel class of nanostructured metal matrix composites (NMMCs) based on submicron SiC particulates reinforced nanocrystalline Al alloys. The successful fabrication of large-dimension NMMCs plates with a cost-effective synthesis and consolidation process that can be scaled up for mass production will be demonstrated. The microstructure, processing, mechanical properties, and their correlations of this class of NMMCs will also be reported. The ballistic performance of the NMMCs is investigated through a real test of high-speed machinegun bullets, and a numerical modeling as well.  相似文献   

3.
Titanium is an important candidate in the search for lighter weight armors. Increasingly, it is being considered as a replacement for steel components. It is also an important component in the application of ceramics to armor systems, especially in armor modules that are capable of defeating kinetic energy penetrators while sustaining little or no penetration of the ceramic element. The best alloy available today for ballistic applications is Ti-6Al-4V, an aerospace grade titanium alloy. The principal deterrent to widespread use of this alloy as an armor material is cost, and a significant portion of the cost is in processing. Consequently, the U.S. Army Research Laboratory undertook a program to study a particular lower cost processing technique [1].

The objectives of this work are to characterize the low-cost titanium alloy by generating constants for the Johnson-Cook (JC) and Zerilli-Armstrong (ZA) strength models, and to use and compare these two models in simulations of ballistic experiments. High strain rate strength data for the low-cost titanium alloy are used to generate parameters for the two models. The approach to fitting the JC parameters follows one previously used successfully to model 2-in thick rolled homogeneous armor (RHA) [2]. The approach to fitting the ZA parameters is based on a method described by Gray et al. [3]. The resulting model parameters are used in the shock physics code CTH [4] to model a Ti-6Al-4V penetrator penetrating a Ti-6Al-4V semi-infinite block at impact velocities up to 2,000 m/s. Similar experiments are performed, and the predictions of the two models are compared to each other and to the experimental results.  相似文献   


4.
It has been shown through experiments that interfacial friction affects the energy absorption of fabrics subjected to ballistic impact. However, how the friction plays a role is not well understood. In this paper, a commercially available finite element analysis code, LS-DYNA, is used to model the ballistic impact of a square patch of single-ply plain-woven fabric. Three types of boundary conditions are applied on the fabric: four edges clamped, two edges clamped, and four edges free. The friction between yarns at their crossovers and the friction between projectile and fabric are taken into account. Effects of the friction during the phase prior to yarn failure are parametrically studied. Simulation results show that at a given time, the fabric with high friction absorbs more energy than the fabric with no friction. For the boundary condition with four edges free, friction contributes to increasing the fabric energy absorption mainly through the mechanism of frictional sliding dissipated energy. For the boundary conditions with two or four edges clamped, the energy dissipated through frictional sliding only accounts for a very small portion of the total absorbed energy; however, both the yarn strain energy and the yarn kinetic energy are increased when there is friction. Friction has an indirect effect on the fabric energy absorption by influencing the number of yarns that become involved. Simulation results also indicate that the boundary conditions significantly affect the fabric deformation, stress distribution, and time history of energy absorption.  相似文献   

5.
本文对弹道防护用先进复合材料的弹道响应研究及其在工程领域的应用现状进行了综述。首先,基于工程应用研究的试验结果,对超高分子量聚乙烯(UHMWPE)纤维、对位芳香族聚酰胺(PPTA)纤维、芳Ⅲ纤维、聚对苯撑苯并双噁唑(PBO)纤维和聚酰亚胺(PI)纤维等高性能纤维的防弹性能及其复合材料在弹道防护工程领域的应用现状进行了概述,近年来先进复合材料的防弹性能随着纤维力学性能的突破而逐渐提高;其次,讨论了先进复合材料弹道响应的影响因素及其作用机制,发现先进复合材料的塑性拉伸变形是其抵挡弹丸侵彻的主要防弹机制;最后,对弹道防护用先进复合材料的研究方向进行了展望。   相似文献   

6.
The moisture diffusion and mechanical response in shear of a laminate constituted of 12 layers of glass fabric fiber/epoxy resin were evaluated. The experimental analysis of the moisture absorption of the specimens conditioned at different relative humidities, 0, 60, and 96% RH at 60°C was to determine the two parameters characteristic of the Fick diffusion law (the diffusion coefficient D and the maximum quantity of water of saturation M m ) which admits the reversibility of the phenomenon. The analysis of the mechanical response in shear of the specimens oriented at 45° tested in uniaxial tension at constant imposed displacement rates, has permitted to show that the influence of the moisture concentration for the composite is very important at 96% RH. The proposed simple model makes it possible to specify the influence of water absorption on the mechanical behavior in shear. Translated from Problemy Prochnosti, No. 4, pp. 133–140, July–August, 2009.  相似文献   

7.
This work addresses the optimum design of a composite box-beam structure subject to strength constraints. Such box-beams are used as the main load carrying members of helicopter rotor blades. A computationally efficient analytical model for box-beam is used. Optimal ply orientation angles are sought which maximize the failure margins with respect to the applied loading. The Tsai–Wu–Hahn failure criterion is used to calculate the reserve factor for each wall and ply and the minimum reserve factor is maximized. Ply angles are used as design variables and various cases of initial starting design and loadings are investigated. Both gradient-based and particle swarm optimization (PSO) methods are used. It is found that the optimization approach leads to the design of a box-beam with greatly improved reserve factors which can be useful for helicopter rotor structures. While the PSO yields globally best designs, the gradient-based method can also be used with appropriate starting designs to obtain useful designs efficiently.  相似文献   

8.
A very simple one-dimensional and fully analytical model of ballistic impact against ceramic/composite armors is presented in this paper. The analytical model has been checked both with ballistic tests and numerical simulations giving predictions in good agreement with them. The model allows the calculation of residual velocity, residual mass, and the projectile velocity and the deflection or the strain histories of the backup material. These variables are important in describing the phenomenological process of penetration. Described are modifications to previous work of impact into ceramics combined with a new composites model. The development of this composite model is based on studies of the impact in yarns, fabrics and finally composites.  相似文献   

9.
10.
This paper presents the influence of fabric structure and thickness on the ballistic impact behavior of Ultrahigh molecular weight polyethylene (UHMWPE) composite laminate. UHMWPE composite laminates, reinforced by three kinds of fabric structures, unidirectional prepreg, 2D plain-woven and 3D single-ply orthogonal woven fabrics, were fabricated via hot pressing curing process. Through a series of standard ballistic tests, we demonstrated that unidirectional composite laminates exhibit higher ballistic impact velocity and absorbed energy capacity compared to others. A bi-linear relationship was found between the ballistic limit velocity and specimen thickness. Furthermore, the dominant failure mechanisms of unidirectional composite laminates were identified to be plugging and hole friction for thin laminates, whereas delamination, fiber tension and bulging for thick ones.  相似文献   

11.
The use of light weight armor against ballistic threats is very important for increasing mobility and survivability. This paper describes ballistic performance of an E-glass/phenolic composite as a function of laminate thickness and projectile impact velocity using mild steel core projectile. The results show that there is a nonlinear relationship between the energy absorption and laminate thickness. The effect of thickness and velocity on energy absorption in the laminates has been explained in terms of interaction time between target and projectile. It is also observed that deformation of the projectile is more dependent on the target thickness than the strike velocity. Changes in failure mechanisms with change in target thickness are also described.  相似文献   

12.
The paper reports experimental and numerical simulation of ballistic impact problems on thin composite laminated plates reinforced with Kevlar 29. Ballistic impact was imparted with simulated fragments designed in accordance with STANAG-2920 on plates of different thickness. Numerical modelling was developed and used to obtain an estimate for the limit perforation velocity (V50) and simulate failure modes and damage. Computations were carried out using a commercial code based on finite differences and values obtained are compared with the experimental data to evaluate the performance of the simulation. Good correlation between computational simulation and experimental results was achieved, both in terms of deformation and damage of the laminates. Future work is advanced to include the interposition of an outer ceramic layer as well as examining the influence of dry-wet and temperature cycles on the mechanical strength of the plates and their temporal evolution under accelerated ageing.  相似文献   

13.
Asymptotic homogenization models for prismatic smart composite structures are derived and the effective elastic, piezoelectric, and thermal expansion coefficients are obtained. The actuation coefficients characterize the intrinsic transducer nature of active smart materials that can be used to induce strains and stresses in a coordinated fashion. Examples of such actuators employed with smart composite material systems are derived from piezoelectric, magnetostrictive and some other materials. The constituents of the smart structures are assumed to exhibit orthotropic characteristics. The original problem for the regularly non-homogeneous smart composite structure reduces to a system of three simpler types of problem, called unit cell problems. It is precisely these unit cell problems that enable the determination of the aforementioned coefficients. These effective coefficients are universal in nature and can be used to study a wide variety of boundary value problems associated with a smart structure of a given geometry.  相似文献   

14.
An experimental and numerical investigation has been carried out to study the behavior of single and multiple laminated panels subjected to ballistic impact. A pressurized air gun is used to shoot the impactor, which can attain sufficient velocity to penetrate all the laminates in a multiple laminated panel. The incidental and residual velocity of the impactor is measured to estimate the energy absorption in the impact process. The commercially available code ABAQUS has been used for the numerical simulation where the impactor has been modeled as a rigid body and the laminates have been modeled with a simple shell element. A user material model based on a continuum damage mechanics concept for failure mechanism of laminated composites has been implemented. Experimental tests showed that the numerical model could satisfactorily predict the energy absorption. Most interestingly, it has clearly demonstrated a feasible phenomenon behind counterintuitive experimental results for the multiple laminated panels.  相似文献   

15.
Armor systems made of ceramic and composite materials are widely used in ballistic applications to defeat armor piercing (AP) projectiles. Both the designers and users of body armor face interesting choices – how best to balance the competing requirements posed by weight, thickness and cost of the armor package for a particular threat level. A finite element model with a well developed material model is indispensible in understanding the various nuances of projectile–armor interaction and finding effective ways of developing lightweight solutions. In this research we use the explicit finite element analysis and explain how the models are built and the results verified. The Johnson–Holmquist material model in LS-DYNA is used to model the impact phenomenon in ceramic material. A user defined material model is developed to characterize the ductile backing made of ultra high molecular weight polyethylene (UHMWPE) material. An ad hoc design optimization is carried out to design a thin, light and cost-effective armor package. Laboratory testing of the prototype package shows that the finite element predictions of damage are excellent though the back face deformations are under predicted.  相似文献   

16.
This article presents computed results for the responses of ceramic targets, with and without prestress, subjected to projectile impact. Also presented is a computational technique to include prestress. Thin and thick ceramic target configurations are used to understand the effect prestressing has on ballistic performance. For both targets two prestress levels (small and large), and two prestress states (radial and hydrostatic) are investigated. The small prestress is similar in magnitude to values obtained experimentally and the large prestress is approximately the maximum prestress the confinement can produce (determined computationally). The targets are subjected to projectile impact and the resulting ballistic responses are evaluated. In all cases prestressing the ceramic enhanced the ballistic performance, although the effect of the different prestress conditions on the ballistic response was not always obvious.  相似文献   

17.
The impact of three different projectiles (0.357 Magnum, 9-mm FMJ and 0.30 cal FSP) onto Kevlar® was modeled using a commercial finite-element program. The focus of the research was on simulating full-scale body armor targets, which were modeled at the yarn level, by reducing to a minimum the number of solid elements per yarn. A thorough validation of the impact physics was performed at the yarn level, single-layer level, and a full body armor system. A verification was performed by checking the numerical model against analytical predictions for yarn impact. For one-layer and multiple-layer targets validation consisted on matching experimental data of pyramid formation recorded by an ultra-high-speed camera. The full-scale targets were also instrumented with nickel–chromium wires that stretch with the yarn during the penetration event. The wires provided a second validation data set since the numerical model can reproduce the signal recorded by the wires. The third and final validation of the model is provided by a comparison of the ballistic limit predicted by the model and data obtained in tests. This is a check of the failure model used in the numerical simulations. This paper shows that the main features of the impact physics are well reproduced by the finite-element model. Prediction of ballistic limits for the 9-mm FMJ and FSP projectiles were within the scatter of the tests, while for the 0.357 projectile the difference was only 15%.  相似文献   

18.
19.
The morphology characterization and computational methods favored numerical simulation and design of microstructures. Indeed, the multiscale approaches enable us to determine the elastic properties of materials. In this paper, the objective is to develop a three-dimensional microstructure of biocomposites containing natural particles. The biocomposite is made of polypropylene matrix mixed with natural fillers. The image is obtained using the microscope. We describe a serial sectioning process and finite element simulations to reproduce, visualize and model these microstructures. Statistical methods are introduced to study the representativity of specimen. The statistical representative volume element is introduced to determine the minimum volume which provides the representativeness. This statistical volume is compared with experimental and numerical ones.  相似文献   

20.
 In this paper a simulation technique is developed to estimate the number of ballistic fabric sheets needed to stop an incoming projectile. Such sheets are free of any fortification by a resin. The computational approach is designed so that it can be easily implemented by a wide audience of researchers in the field, without resorting to more involved finite element formulations. This is achieved by taking advantage of the intrinsic characteristics of such fabric structures. Since the deformations of the fabric are (a) finite, (b) nonlinearly inelastic due to progressive fiber degradation and (c) dynamically coupled to the projectile, the system is highly nonlinear. A temporally adaptive, iterative scheme is developed to solve the system. Theoretical issues pertaining to convergence of the algorithm are investigated. Large-scale 3-D numerical examples are then given to illustrate the approach in determining the number of sheets needed to stop a projectile. Received 28 February 2002 / Accepted 2 April 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号