首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Applied Thermal Engineering》2000,20(12):1075-1103
Much work is currently focussed on identifying economically and environmentally optimal strategies for increasing gas turbine based combined heat and power (CHP). In many such studies, only a few fixed parameters are used to describe the CHP plant. These are typically total and electrical efficiencies, investment and running costs, minimum and maximum acceptable size, and minimum acceptable part-load. However, for gas turbine based systems these characteristics are clearly functions of the operating conditions, especially for part-load operation. This study examines the effects of varying performance of the gas turbine on the overall heat production costs and CO2 emissions of a medium sized community district heating plant. Both single and double-shaft engines are considered in the study. The results show that the assumption of constant efficiencies for all operating conditions leads to an overestimation of the optimal CHP plant size, thereby underestimating the heat production costs and overestimating the CO2 emissions of the plant. The results also show marked differences according to the type of gas turbine used and part-load operating strategy adopted. In particular, the paper discusses the part-load operating difficulties for CHP plants running gas turbines equipped with low emissions burners.  相似文献   

2.
Alternative ORC bottoming cycles FOR combined cycle power plants   总被引:1,自引:0,他引:1  
In this work, low temperature Organic Rankine Cycles are studied as bottoming cycle in medium and large scale combined cycle power plants. The analysis aims to show the interest of using these alternative cycles with high efficiency heavy duty gas turbines, for example recuperative gas turbines with lower gas turbine exhaust temperatures than in conventional combined cycle gas turbines. The following organic fluids have been considered: R113, R245, isobutene, toluene, cyclohexane and isopentane. Competitive results have been obtained for toluene and cyclohexane ORC combined cycles, with reasonably high global efficiencies.  相似文献   

3.
燃气轮机是21世纪乃至更长时间内能源高效转换与洁净利用系统的核心动力装备.介绍了燃气轮机的发展现状及其在热电联产工程中的应用,简述了联合循环和简单循环燃气轮机电厂的基本组合方式,并列举了目前应用在热电联产工程中的几种主要的燃气轮机.阐述了燃气轮机相对于常规火电机组的优点,分析了影响燃气轮机在热电联产工程中推广的因素,并对我国燃气轮机的发展前景进行了展望.  相似文献   

4.
利用Thermoflex软件模拟了具有不同燃气初温和压比的燃气轮机,并用模拟的燃气轮机设计联合循环电站.采用燃气轮机维护费用因子对选用不同燃气轮机电站的经济性进行计算,并对天然气价格提高的情况也进行了讨论.目的是分析燃气轮机燃气初温提高引起的成本和维护费用增加对电站经济性的影响.分析结果表明:采用更高初温的燃气轮机的联合循环电站并不一定具有更高的经济性.所得结果可作为联合循环电站燃气轮机选型的参考.图9表3参4  相似文献   

5.
D. Vera  F. Jurado  B. de Mena  G. Schories 《Energy》2011,36(12):6720-6730
The olive oil industry generates during the extraction process several solid wastes as olive tree leaves and prunings, exhausted pomace and olive pits. These renewable wastes could be used for power and heat applications. The aim of this paper is to compare the performance of two small-scale CHP systems: a gasification- gas turbine system and an EFGT (externally fired gas turbine system). For this reason, several parameters have been calculated: generated heat and power, electric and overall efficiencies, biomass consumption, exergy efficiency, optimum pressure ratio, etc. These systems provide 30 kWe and about 60kWth. Simulation results show that the electrical and overall efficiencies achieved in EFGT system (19.1% and 59.3%, respectively) are significantly higher than those obtained in the gasification plant (12.3% and 45.4%). The proposed CHP systems have been modeled using Cycle-Tempo® software.  相似文献   

6.
Combined‐cycle power plants are currently preferred for new power generation plants worldwide. The performance of gas‐turbine engines can be enhanced at constant turbine inlet temperatures with the addition of a bottoming waste‐heat recovery cycle. This paper presents a study on the energy and exergy analysis of a novel hybrid Combined‐Nuclear Power Plant (HCNPP). It is thus interesting to evaluate the possibility of integrating the gas turbine with nuclear power plant of such a system, utilizing virtually free heat. The integration arrangement of the AP600 NPP steam cycle with gas turbines from basic thermodynamic considerations will be described. The AP600 steam cycle modifications to combine with the gas turbines can be applied to other types of NPP. A simple modeling of Alstom gas turbines cycle, one of the major combined‐cycle steam turbines manufacturers, hybridized with a nuclear power plant from energetic and exergetic viewpoint is provided. The Heat Recovery Steam Generator (HRSG) has single steam pressure without reheat, one superheater and one economizer. The thermodynamic parameters of the working fluids of both the gas and the steam turbines cycles are analyzed by modeling the thermodynamic cycle using the Engineering Equation Solver (EES) software. In case of hybridizing, the existing Alstom gas turbine with a pressurized water nuclear power plants using the newly proposed novel solution, we can increase the electricity output and efficiency significantly. If we convert a traditional combined cycle to HCNPP unit, we can achieve about 20% increase in electricity output. This figure emphasizes the significance of restructuring our power plant technology and exploring a wider variety of HCNPP solutions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
The first aim of this paper is to shed light on the thermodynamic reasons for the practical pursuit of low temperature operation by engineers involved in the design and the operation of combined heat and power (CHP) and district heating (DH) systems. The paper shows that the steam cycle of a combined heat and power generator is thermodynamically equivalent to a conventional steam cycle generator plus an additional virtual steam cycle heat pump. This apparently novel conceptualisation leads directly to (i) the observed sensitivity of coefficient of performance of CHP to supply and return temperatures in associated DH systems, and (ii) the conclusion that the performance of CHP will tend to be significantly higher than real heat pumps operating at similar temperatures. The second aim, which is pursued more qualitatively, is to show that the thermodynamic performance advantages of CHP are consistent with the goal of deep, long-term decarbonisation of industrialised economies. As an example, estimates are presented, which suggest that CHP based on combined-cycle gas turbines with carbon capture and storage has the potential to reduce the carbon intensity of delivered heat by a factor of ∼30, compared with a base case of natural gas-fired condensing boilers.  相似文献   

8.
Abstract

In the 1970 and 1980s, gasifiers were envisaged for synthesising substitute natural gas (SNG) as well for IGCC (integrated gasification combined cycle) systems. Component temperatures were above 700°C, but stainless alloys did not have the required corrosion resistance. Experimental alloys developed in the UK were alumina formers, incorporating Ta, W, and Mo as gettering elements for sulphidation resistance. Sulphidation corrosion is solvable, but attack by HCl in gasification environments seems intractable. The supposed materials problems of gasification, plus the complexity of IGCC, have led to them being sidelined for power generation. However, commercial IGCC plants are not dependent on high temperature materials and offer higher efficiency than Rankine cycle steam. Best near term prospects for IGCC are for CO2 capture, but this constrains the type of gasifier. Gasifiers incorporating carbon capture and storage produce hydrogen, or with less capture, SNG. Such systems will supply SNG for space heating as well as electricity, and can cope with the intermittency of wind energy. High efficiency IGCCs will need very advanced gas turbines with 100 bar, 1500-1600°C turbine inlet conditions. Key requirements will be thermal barrier coatings and catalytic combustor materials. Such gas turbines would offer efficiencies of 70% in straight CCGTs, or 50% when used in carbon capture IGCCs.  相似文献   

9.
多燃机电厂的负荷分配优化   总被引:1,自引:0,他引:1  
燃机电厂基本都要承担电力调峰任务。对于多台燃机并存的电厂,电力负荷在机组间的分配合理与否直接关系到电厂运行的经济性。本文采用简单解析分析和实际案例测算相结合的方法.研究了多燃机电厂的负荷分配优化问题.重点讨论了两套PG9171E型或PG9351FA型燃气轮机单循环。或两套S109E或S109FA联合循环发电系统。结果表明。当各单机负荷可大于一定值时.机组间平均分配负荷.则电厂的热经济性最佳;否则.非均匀分配负荷.总热效率较优。这一定值与燃机部分负荷特性密切相关。本文的结果对指导多燃机电厂的实际运行具有参考价值。  相似文献   

10.
Current research programmes such as the CAGT programme investigate the opportunity for advanced power generation cycles based on state-of-the-art aeroderivative gas turbine technology. Such cycles would be primarily aimed at intermediate duty applications. Compared to industrial gas turbines, aeroderivatives offer high simple cycle efficiency, and the capability to start quickly and frequently without a significant maintenance cost penalty. A key element for high system performance is the development of improved heat recovery systems, leading to advanced cycles such as the humid air turbine (HAT) cycle, the chemically recuperated gas turbine (CRGT) cycle and the Kalina combined cycle. When used in combination with advanced technologies and components, screening studies conducted by research programmes such as the CAGT programme predict that such advanced cycles could theoretically lead to net cycle efficiencies exceeding 60%. In this paper, the authors present the application of the modular approach to cycle simulation and performance predictions of CRGT cycles. The paper first presents the modular simulation code concept and the main characteristics of CRGT cycles. The paper next discusses the development of the methane–steam reformer unit model used for the simulations. The modular code is then used to compute performance characteristics of a simple CRGT cycle and a reheat CRGT cycle, both based on the General Electric LM6000 aeroderivative gas turbine.  相似文献   

11.
Biomass has recently received considerable attention as a potential substitute for fossil fuels in electric power production. Renewable biomass crops, industrial wood residues, and municipal wastes as fuels for production of electricity allow substantial reduction of environmental impact. High reactivity of biomass makes it relatively easy to convert solid feedstocks into gaseous fuel for subsequent use in a power cycle.So far most of the studies were focused on investigating performance and economics of biomass gasifiction–gas turbine systems. A general conclusion resulting from these studies is that the combination of biomass gasifiers, hot gas cleanup systems, and advanced gas turbines is promising for cost competitive electric power generation[1, 2]. In this paper another concept of biomass fueled power systems is considered, namely biomass gasification with a molten carbonate fuel cell (MCFC). Comparison between two concepts is made in terms of efficiency, feasibility, and process requirements. As an example of such a system, a highly efficient novel power cycle consisting of the Battelle gasification process, a molten carbonate fuel cell, and a steam turbine is introduced. The calculated efficiency is around 53%, which exceeds efficiencies of traditional designs[1, 3] considerably. Finally, an economic analysis and electricity cost projection are performed for a power plant consuming 2000 tons of biomass per day. Results are compared with those for more traditional integrated biomass gasification/gas turbine systems and for coal fueled cycles.  相似文献   

12.
Solar gas turbine systems: Design, cost and perspectives   总被引:2,自引:0,他引:2  
The combination of high solar shares with high conversion efficiencies is one of the major advantages of solar gas turbine systems compared to other solar-fossil hybrid power plants. Pressurized air receivers are used in solar tower plants to heat the compressed air in the gas turbine to temperatures up to 1000 °C. Therefore solar shares in the design case of 40% up to 90% can be realized and annual solar shares up to 30% can be achieved in base load. Using modern gas turbine systems in recuperation or combined cycle mode leads to conversion efficiencies of the solar heat from around 40% up to more than 50%. This is an important step towards cost reduction of solar thermal power. Together with the advantages of hybrid power plants—variable solar share, fully dispatchable power, 24 h operation without storage—solar gas turbine systems are expected to have a high potential for market introduction in the mid term view.In this paper the design and performance assessment of several prototype plants in the power levels of 1 MW, 5 MW and 15 MW are presented. Advanced software tools are used for design optimization and performance prediction of the solar tower gas turbine power plants. Detailed cost assumptions for the solarized gas turbine, the solar tower plant and further equipment as well as for operation and maintenance are presented. Intensive performance and economic analysis of the prototype plants for different locations and capacity factors are shown. The cost reduction potential through automation and remote operation is revealed.  相似文献   

13.
The gas turbine engine is characterized by its relatively low capital cost compared with steam power plants. It has environmental advantages and short construction lead time. However, conventional industrial engines have lower efficiencies especially at part load. One of the technologies adopted nowadays for improvement is the “combined cycle”. Hence, it is expected that the combined cycle continues to gain acceptance throughout the world as a reliable, flexible and efficient base load power generation plant. In this article, 12 research investigations, carried out by the author and associates during the last 10 years are briefly reviewed. These cover 12 gas turbine systems which would contribute towards efficient use of energy. They entail fundamental studies in addition to applications of combined systems in industry including: the closed gas turbine cycle; the organic Rankine cycle; repowering; integrated power and refrigeration; cryogenic power; liquefied natural gas (LNG) gasification; and inlet air cooling.  相似文献   

14.
Inlet fogging has been widely noticed in recent years as a method of gas turbine air inlet cooling for increasing the power output in gas turbines and combined cycle power plants. The effects of evaporative cooling on gas turbine performance were studied in this paper. Evaporative cooling process occurs in both compressor inlet duct (inlet fogging) and inside the compressor (wet compression). By predicting the reduction in compressor discharge air temperature, the modeling results were compared with the corresponding results reported in literature and an acceptable difference percent point was found in this comparison. Then, the effects of both evaporative cooling in inlet duct, and wet compression in compressor, on the power output, turbine exhaust temperature, and cycle efficiency of 16 models of gas turbines categorized in four A–D classes of power output, were investigated. The results of this analysis for saturated inlet fogging as well as 1% and 2% overspray are reported and the prediction equations for the amount of actual increased net power output of various gas turbine nominal power output are proposed. Furthermore the change in values of physical parameters and moving the compressor operating point towards the surge line in compressor map was investigated in inlet fogging and wet compression processes.  相似文献   

15.
以我国自行研制的9000kW燃气轮机为对象,详细分析了9000kW燃气一蒸汽联合循环的现实性和优越性,为我国自行研制的燃气轮机进一步开发联合循环电站找到了可行的途径。  相似文献   

16.
为了应对日益高涨的能源价格及环保要求,参考和借鉴国外最新的H级燃气轮机的技术对提高我国燃气轮机联合循环发电的效率和经济性至关重要。相较于F级重型燃气轮机技术的研究,国内研究和制造单位对于更先进的H级重型燃气轮机的研究分析尚且不足。本文总结了国内外H级燃气轮机的装机情况,分析了全球四大燃气轮机发电设备主机厂最新H级燃气轮机的技术特点,综述了国内H级燃气轮机目前研究发展现状,以期为国内先进重型燃气轮机研发和设备选型提供技术参考。  相似文献   

17.
《Energy》2005,30(7):1013-1078
Gas turbines with air–water mixtures as the working fluid promise high electrical efficiencies and high specific power outputs to specific investment costs below that of combined cycles. Different humidified gas turbine cycles have been proposed, for example direct water-injected cycles, steam-injected cycles and evaporative cycles with humidification towers. However, only a few of these cycles have been implemented and even fewer are available commercially. This paper comprehensively reviews the literature on research and development on humidified gas turbines and identifies the cycles with the largest potential for the future. In addition, the remaining development work required for implementing the various humidified gas turbine cycles is discussed. This paper can also be used as a reference source that summarizes the research and development activities on humidified gas turbines in the last three decades.  相似文献   

18.
A detailed system study on an integrated gasifier-SOFC test system which is being constructed for combined heat and power (CHP) application is presented. The performance of the system is evaluated using thermodynamic calculations. The system includes a fixed bed gasifier and a 5 kW SOFC CHP system. Two kinds of gas cleaning systems, a combined high and low temperature gas cleaning system and a high temperature gas cleaning system, are considered to connect the gasifier and the SOFC system. A complete model of the gasifier-SOFC system with these two gas cleaning systems is built and evaluated in terms of energy and exergy efficiencies. A sensitivity study is carried out to check system responses to different working parameters. The results of this work show that the electrical efficiencies of the gasifier-SOFC CHP systems with different gas cleaning systems are almost the same whereas the gasifier-SOFC CHP systems with the high temperature gas cleaning system offers higher heat efficiency for both energy and exergy.  相似文献   

19.
《Journal of power sources》2006,158(2):1290-1305
The evaluation of solid oxide fuel cell (SOFC) combined heat and power (CHP) system configurations for application in residential dwellings is explored through modeling and simulation of cell-stacks including the balance-of-plant equipment. Five different SOFC system designs are evaluated in terms of their energetic performance and suitability for meeting residential thermal-to-electric ratios. Effective system concepts and key performance parameters are identified. The SOFC stack performance is based on anode-supported planar geometry. A cell model is scaled-up to predict voltage–current performance characteristics when served with either hydrogen or methane fuel gas sources. System comparisons for both fuel types are made in terms of first and second law efficiencies. The results indicate that maximum efficiency is achieved when cathode and anode gas recirculation is used along with internal reforming of methane. System electric efficiencies of 40% HHV (45% LHV) and combined heat and power efficiencies of 79% (88% LHV) are described. The amount of heat loss from small-scale SOFC systems is included in the analyses and can have an adverse impact on CHP efficiency. Performance comparisons of hydrogen-fueled versus methane-fueled SOFC systems are also given. The comparisons indicate that hydrogen-based SOFC systems do not offer efficiency performance advantages over methane-fueled SOFC systems. Sensitivity of this result to fuel cell operating parameter selection demonstrates that the magnitude of the efficiency advantage of methane-fueled SOFC systems over hydrogen-fueled ones can be as high as 6%.  相似文献   

20.
Policy instruments clearly influence the choice of production technologies and fuels in large energy systems, including district heating networks. Current Swedish policy instruments aim at promoting the use of biofuel in district heating systems, and at promoting electric power generation from renewable energy sources. However, there is increasing pressure to harmonize energy policy instruments within the EU. In addition, natural gas based combined cycle technology has emerged as the technology of choice in the power generation sector in the EU. This study aims at exploring the role of policy instruments for promoting the use of low CO2 emissions fuels in high performance combined heat and power systems in the district heating sector. The paper presents the results of a case study for a Swedish district heating network where new large size natural gas combined cycle (NGCC) combined heat and power (CHP) is being built. Given the aim of current Swedish energy policy, it is assumed that it could be of interest in the future to integrate a biofuel gasifier to the CHP plant and co‐fire the gasified biofuel in the gas turbine unit, thereby reducing usage of fossil fuel. The goals of the study are to evaluate which policy instruments promote construction of the planned NGCC CHP unit, the technical performance of an integrated biofuelled pressurized gasifier with or without dryer on plant site, and which combination of policy instruments promote integration of a biofuel gasifier to the planned CHP unit. The power plant simulation program GateCycle was used for plant performance evaluation. The results show that current Swedish energy policy instruments favour investing in the NGCC CHP unit. The corresponding cost of electricity (COE) from the NGCC CHP unit is estimated at 253 SEK MWh?1, which is lower than the reference power price of 284 SEK MWh?1. Investing in the NGCC CHP unit is also shown to be attractive if a CO2 trading system is implemented. If the value of tradable emission permits (TEP) in such as system is 250 SEK tonne?1, COE is 353 SEK MWh?1 compared to the reference power price of 384 SEK MWh?1. It is possible to integrate a pressurized biofuel gasifier to the NGCC CHP plant without any major re‐design of the combined cycle provided that the maximum degree of co‐firing is limited to 27–38% (energy basis) product gas, depending on the design of the gasifier system. There are many parameters that affect the economic performance of an integrated biofuel gasifier for product gas co‐firing of a NGCC CHP plant. The premium value of the co‐generated renewable electricity and the value of TEPs are very important parameters. Assuming a future CO2 trading system with a TEP value of 250 SEK tonne?1 and a premium value of renewable electricity of 200 SEK MWh?1 COE from a CHP plant with an integrated biofuelled gasifier could be 336 SEK MWh?1, which is lower than both the reference market electric power price and COE for the plant operating on natural gas alone. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号