首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Solid sorption short cycle heat pump (⩽10 kW) which uses physical adsorption and is of interest to the space and domestic application is designed and tested. This heat pump has a very short (12 min), nonintermittent, two adsorber heat recovery cycles with an active carbon fiber as a sorbent bed and ammonia as a working fluid. It has two energy sources: solar and gas flame. The system management consists only in actuating the special type valves to change the direction of the heating circuit and water valves to change the water cooling circuit.  相似文献   

2.
《Applied Energy》2001,68(2):161-171
Based on the performance analysis of the single stage, the two-stage and the double absorption heat transformer, a new ejection–absorption heat transformer is presented and analyzed in this paper. The results show that it has a simpler configuration than the double absorption heat transformer and two-stage heat transformer. The delivered useful temperature in the ejection–absorption heat transformer is higher than for a single stage heat transformer and simultaneously its system performance is raised.  相似文献   

3.
4.
Fluid mechanics and heat transfer are studied in a double-tube heat exchanger that uses the combustion gases from natural gas in a porous medium located in a cylindrical tube to warm up air that flows through a cylindrical annular space. The mathematical model is constructed based on the equations of continuity, linear momentum, energy and chemical species. Unsteady fluid mechanics and heat transfer by forced gas convection in the porous media, with combustion in the inner tube, coupled to the forced convection of air in the annular cylindrical space are predicted by use of finite volumes method. Numerical simulations are made for four values of the annular air flow Reynolds number in the range 100 ? Re ? 2000, keeping constant the excess air ψ = 4.88, the porosity ε = 0.4, and the air–fuel mixture inlet speed Uo = 0.43 m/s. The results obtained allow the characterization of the velocity and temperature distributions in the inner tube and in the annular space, and at the same time to describe the displacement of the moving combustion zone and the annular porous media heat exchanger thermal efficiency. It is concluded that the temperature increase is directly related to the outer Reynolds number.  相似文献   

5.
The problem of steady conjugate heat transfer through an electrically-conducting fluid for a vertical flat plate in the presence of transverse uniform magnetic field taking into account the effects of viscous dissipation, Joule heating, and heat generation is formulated. The general governing equations which include such effects are made dimensionless by means of an apposite transformation. The ultimate resulting equations obtained by introducing the stream function with the similarity variable are solved numerically using the implicit finite difference method for the boundary conditions based on conjugate heat transfer process. A representative set of numerical results for the velocity and temperature profiles, the skin friction coefficients as well as the rate of heat transfer coefficient and the surface temperature distribution are presented graphically and discussed. A comprehensive parametric study is carried out to show the effects of the magnetic parameter, viscous dissipation parameter, Joule heating parameter, conjugate conduction parameter, heat generation parameter and the Prandtl number on the obtained solutions.  相似文献   

6.
《Exergy》2001,1(3):209-215
Flow over a protruding bluff body finds wide application in many engineering fields. The modeling of the conjugate heating process due to bluff body gives insight into the physical process involved and minimizes the experimental cost. In the present study, the transient conjugate heat transfer analysis of the bluff body subjected to low Reynolds number flow is considered. The governing flow and energy equations are solved numerically using a control volume approach. The heat transfer characteristics are examined through the normalized Stanton number. The entropy generation due to fluid friction and heat transfer in the fluid system is computed and ratio of rate of heat transfer to irreversibility generated is obtained. It is found that the heat transfer in the region of top and bottom edges of the bluff body is enhanced due to the convection effect. The heat transfer to irreversibility ratio decreases sharply as the heating progresses.  相似文献   

7.
The main objective of the present investigation is to study heat transfer in parallel micro-channels of 0.1 mm in size. Comparison of the results of this study to the ones obtained for two-phase flow in “conventional” size channels provides information on the complex phenomena associated with heat transfer in micro-channel heat sinks. Two-phase flow in parallel micro-channels, feeding from a common manifold shows that different flow patterns occur simultaneously in the different micro-channels: liquid alone (or single-phase flow), bubbly flow, slug flow, and annular flow (gas core with a thin liquid film, and a gas core with a thick liquid film). Although the gas core may occupy almost the entire cross-section of the triangular channel, making the side walls partially dry, the liquid phase always remained continuous due to the liquid, which is drawn into the triangular corners by surface tension. With increasing superficial gas velocity, a gas core with a thin liquid film is observed. The visual observation showed that as the air velocity increased, the liquid droplets entrained in the gas core disappeared such that the flow became annular. The probability of appearance of different flow patterns should be taken into account for developing flow pattern maps. The dependence of the Nusselt number, on liquid and gas Reynolds numbers, based on liquid and gas superficial velocity, respectively, was determined in the range of ReLS = 4–56 and ReGS = 4.7–270. It was shown that an increase in the superficial liquid velocity involves an increase in heat transfer (NuL). This effect is reduced with increasing superficial gas velocity, in contrast to the results reported on two-phase heat transfer in “conventional size” channels.  相似文献   

8.
In a multi-energy collaboration system, cooling, heating, electricity, and other energy components are coupled to complement each other. Through multi-energy coordination and cooperation, they can significantly improve their individual operating efficiency and overall economic benefits. Demand response, as a multi-energy supply and demand balance method, can further improve system flexibility and economy. Therefore, a multi-energy cooperative system optimization model has been proposed, which is driven by price-based demand response to determine the impact of power-demand response on the optimal operating mode of a multi-energy cooperative system. The main components of the multi-energy collaborative system have been analyzed. The multi-energy coupling characteristics have been identified based on the energy hub model. Using market elasticity as a basis, a price-based demand response model has been built. The model has been optimized to minimize daily operating cost of the multi-energy collaborative system. Using data from an actual situation, the model has been verified, and we have shown that the adoption of price-based demand response measures can significantly improve the economy of multi-energy collaborative systems.  相似文献   

9.
This paper presents an experimental study on the convective boiling heat transfer and the critical heat flux (CHF) of ethanol–water mixtures in a diverging microchannel with artificial cavities. The results show that the boiling heat transfer and the CHF are significantly influenced by the molar fraction (xm) as well as the mass flux. For the single-phase convection region except for the region near the onset of nucleate boiling with temperature overshoot, the single-phase heat transfer coefficient is independent of the wall superheat and increases with a decrease in the molar fraction. After boiling incipience, the two-phase heat transfer coefficient is much higher than that of single-phase convection. The two-phase heat transfer coefficient shows a maximum in the region of bubbly-elongated slug flow and deceases with a further increase in the wall superheat until approaching a condition of CHF, indicating that the heat transfer is mainly dominated by convective boiling. A flow-pattern-based empirical correlation for the two-phase heat transfer coefficient of the flow boiling of ethanol–water mixtures is developed. The overall mean absolute error of the proposed correlation is 15.5%, and more than 82.5% of the experimental data were predicted within a ±25% error band. The CHF increases from xm = 0–0.1, and then decreases rapidly from xm = 0.1–1 at a given mass flux of 175 kg/m2 s. The maximum CHF is reached at xm = 0.1 due to the Marangoni effect, indicating that small additions of ethanol into water could significantly increase the CHF. On the other hand, the CHF increases with increasing the mass flux at a given molar fraction of 0.1. Moreover, the experimental CHF results are compared with existing CHF correlations of flow boiling of the mixtures in a microchannel.  相似文献   

10.
This paper analyzes the heat transfer and pressure drop characteristics of a tube–fin heat exchanger in ice slurry HVAC system. Ice slurry is a suspension of crystallized water based - ice solution with a freezing point depressant like ethylene glycol. The ice- slurry is pumpable, hence it is also called pumpable ice. The composition of ice slurry considered for analysis is 14% ice fraction, 16% ethylene glycol, and 70% water by volume. It is deduced that the ice slurry HVAC system results in 7.4% increase in temperature drop over the conventional chilled water system The latent heat absorbed by ice slurry on melting makes it an attractive choice for achieving high degree of cooling. The numerical analysis was conducted by simulating the ice slurry tube flow region and air flow region of tube–fin heat exchanger in the air-handling unit of HVAC system. For the simulation six different louver patterns with 10 to 55 louver angle were considered. The design of the tube–fin heat exchanger for optimal heat transfer and pressure drop characteristics was also determined with the optimization parameter like louver angle, fin pitch, and ice slurry flow velocity.  相似文献   

11.
The results obtained by ray-tracing method can be regarded as benchmarks for its good accuracy. However, up to now, this method can be only used to solve radiative transfer within medium confined between two specular surfaces or two diffuse surfaces. This article proposes a hybrid ray-tracing method to solve the radiative transfer inside a plane-parallel absorbing–emitting–scattering medium with one specular surface and another diffuse surface (S–D surfaces). By the hybrid ray-tracing method, radiative transfer coefficients (RTCs) for S–D surfaces are deduced. Both surfaces of the medium under consideration are considered to be semitransparent or opaque. This paper examines the effects of scattering albedo, opaque surface emissivity and anisotropically scattering on steady-state heat flux and transient temperature fields. From the results it is found that the effects of anisotropic scattering is more for a bigger optical thickness medium; and keeping other optical parameters unchanged, anisotropic scattering affects transient temperature distributions so much in a small refractive index medium.  相似文献   

12.
Analytic solutions for the gas and liquid velocity and temperature distribution are determined for steady state one-dimensional microchannel cylindrical Couette flow between a shaft and a concentric cylinder. The solution is based on the continuum model and takes into consideration the velocity slip and temperature jump in the gaseous phase defined by the Knudsen number range of 0.001 < Kn < 0.1. The two fluids are assumed immiscible. The gas layer is adjacent to the shaft which rotates with angular velocity ωs and is thermally insulated. The outer cylinder rotates with angular velocity ωo and is maintained at uniform temperature. The governing parameters are identified and the effects of the Knudsen number and accommodation coefficients on the velocity and temperature profiles, reduction in the overall temperature rise due to the gas layer, the Nusselt number and shear reduction are examined. It was found that the required torque to rotate the liquid in the annular space is significantly reduced by introducing a thin gas layer adjacent to the shaft. Also, reduction in shaft temperature is enhanced through a combination of high energy accommodation coefficient and low momentum accommodation coefficients. Results also indicate that the gas layer becomes more effective in reducing the shaft temperature when the housing angular velocity is much larger than the shaft angular velocity.  相似文献   

13.
《Applied Thermal Engineering》2002,22(12):1277-1288
This paper presents an experimental study on buoyancy-induced flow patterns and heat transfer characteristics of airflow through a horizontal rectangular channel. The channel had an aspect ratio of six, and its bottom and sidewalls were heated, whereas the top of the channel was cooled. The experiments were conducted at the Reynolds numbers 40 and Rayleigh numbers ranging from 100 to 4200. The Nusselt number and the temperature distributions on the top surface of the channel were measured simultaneously at different thermal/flow conditions, and the heat transfer characteristics of the channel was evaluated, together with the flow patterns in the channel. The results showed that due to the heated sidewalls, which was an `imperfect' factor comparing with the classic Rayleigh–Bénard channel, the longitudinal vortex rolls can occur at the Rayleigh number Ra=100, starting with number of rolls N=2 and then N=4 as the Ra increases, rather than the N=6 mode for the same channel with `perfect' sidewalls. In the present study, the six-roll mode occurred at Ra=1730 and above, but an initial trigger was required. Otherwise the four-roll mode would continue to be the dominant flow pattern at high Rayleigh numbers. It was demonstrated that significant heat transfer enhancement could be achieved in low Reynolds and Rayleigh number flow if the longitudinal vortex rolls were excited in the channel.  相似文献   

14.
15.
In this paper, we solve the Falkner–Skan equation with heat transfer through an expansion in Fourier series, results are improved by incorporating an asymptotic analysis for the Fourier series coefficients. The results show that the classical expansion in Fourier series together with the incorporation of an asymptotic analysis for coefficients of the series delivers a solution with very good accuracy and rapid convergence when it is compared with other methods of solution found in the literature as finite difference and shooting method.  相似文献   

16.
In the project described in this paper an experimental rig for a one-stage absorption heat transformer was designed and constructed. One aim of the project was to reduce the investment costs for the apparatus. This incorporates new and less expensive compact brazed plate heat exchangers for generator, evaporator, condenser and solution heat exchanger. The absorber was designed as a helical coil pipe absorber, where the weak solution trickles down as a falling film outside of the coil. The tests of the equipment involved measurements using a mixture of trifluorethanol (TFE) and tetraethyleneglycoldimethylether (E181). The process characteristics were investigated for different temperatures of the rich solution leaving the absorber. Experimental results are presented and compared with the results of a computer simulation model. Additionally the model was used to compare the COP of the heat transformation process with the mixtures lithium bromide–water (LiBr–H2O) and ammonia–water (NH3–H2O). Furthermore, the overall heat and mass transfer coefficients for the plate heat exchangers and the falling film absorber were evaluated and compared with those of shell and tube heat exchangers.  相似文献   

17.
In the present work, the mechanical properties and hydrogen interaction with microstructures obtained after thermal treatment of a 2.25Cr–1Mo–0.25V bainitic steel were investigated. The samples were heat-treated under two different conditions simulating shop-repairs and manufacturing procedures of reactors. The microstructures after each heat treatment showed MC, M2C, and M7C3 carbides, characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS). The hydrogen diffusivity values after the first permeation for both conditions were 4.2 × 10?11 m2s?1 and 8.6 × 10?11 m2 s?1, and the solubility was 7.4 molHm?3 and 5.3 molHm?3, showing the influence trapping in the behavior of permeation curves. The TDS results indicate that a greater hydrogen trapping capability can be achieved with one of the studied conditions. Tensile testing of the hydrogenated and heat-treated samples, showed that the number of heat treatment cycles has a strong influence on the loss of ductility, which is mainly due to carbide growth and coalescence.  相似文献   

18.
Laminar convective heat transfer and viscous pressure loss were investigated for alumina–water and zirconia–water nanofluids in a flow loop with a vertical heated tube. The heat transfer coefficients in the entrance region and in the fully developed region are found to increase by 17% and 27%, respectively, for alumina–water nanofluid at 6 vol % with respect to pure water. The zirconia–water nanofluid heat transfer coefficient increases by approximately 2% in the entrance region and 3% in the fully developed region at 1.32 vol %. The measured pressure loss for the nanofluids is in general much higher than for pure water. However, both the measured nanofluid heat transfer coefficient and pressure loss are in good agreement with the traditional model predictions for laminar flow, provided that the loading- and temperature-dependent thermophysical properties of the nanofluids are utilized in the evaluation of the dimensionless numbers. In other words, no abnormal heat transfer enhancement or pressure loss was observed within measurement errors.  相似文献   

19.
In this analysis, the effect of Catteneo–Christov model on heat alongside mass transport magnetohydrodynamics of a Casson nanoliquid with thermal radiation and Soret–Dufour mechanism is considered. The fluid flow is considered through porous media as the thermophysical attributes such as viscosity along with thermal conductivity are considered to be constant. Suitable similarity transformations were employed on the governing coupled flow equation to yield total differential equations (ODE). An accurate and newly developed spectral method called spectral homotopy analysis method (SHAM) was employed to provide solution to the simplified equations. The numerical method of homotopy analysis method (HAM) is SHAM. SHAM portrays the division of nonlinear equations into linear as well as nonlinear parts. The findings in this study show that an increment in the Casson parameter is seen to elevate the velocity plot at the wall and lessen the velocity far away from the plate. An increase in the Brownian motion and thermophoresis term is observed to speed up the local skin friction coefficient.  相似文献   

20.
In this paper, the laminar forced convection heat transfer of the water-based nanofluid inside a minichannel heat sink is studied numerically. An Eulerian two-fluid model is considered to simulate the nanofluid flow inside the triangular heat sink and the governing continuity, momentum, and energy equations for both phases are solved using the finite volume method. Comparisons of the Nusselt number predicted by the Eulerian–Eulerian model with the experimental data available in the literature demonstrate that the simulation results are in excellent agreement with the experimental data and the maximum deviation from experimental data is 5%. The results show that the heat sink with nanofluid has a better heat transfer rate in comparison with the water-cooled heat sink. Also, the heat transfer enhancement increases with an increase in Reynolds number and nanoparticle volume concentration. In addition, the friction factor increases slightly for nanofluid-cooled minichannel heat sink.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号