首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
颜锋 《四川冶金》2013,35(2):52-57
对涟钢HMPT-BOF-RH-MFB-CSP单联工艺生产SPHE钢时RH精炼过程中精炼渣进行取样分析,研究表明:随精炼过程的进行,RH精炼渣系的熔点呈下降趋势;但氧化性增强,致使不少炉次在RH精炼阶段存在“回硫”现象;并且,在RH精炼脱碳过程炉渣Al2O3含量在逐步增加,RH精炼结束时,炉渣中Al2O3含量在27%~37%,不利于吸收钢液中上浮的Al2O3夹杂物.为此提出了RH较为合理的终渣系目标控制范围.  相似文献   

2.
曾亚南  孙彦辉  蔡开科  徐蕊 《钢铁》2014,49(9):38-43
 基于BOF→RH→CSP生产工艺,研究了RH精炼过程钢中夹杂物类型演变及MgO?Al2O3夹杂物形成规律,同时对MgO?Al2O3夹杂物的形成条件进行了热力学计算,借助CFD数值模拟软件研究了RH精炼过程卷渣行为。研究发现,RH精炼过程20和30 min时,[w([MgO])/w([Al2O3])]为0.005~0.020,未发现MgO?Al2O3夹杂物;RH出站后夹杂物[w([MgO])/w([Al2O3])]为0.3~0.5,且RH精炼结束后MgO?Al2O3夹杂物占夹杂物总量的58.4%;另外,RH精炼过程钢液表面速度CFD模拟结果为0.57 m/s,大于临界卷渣速度0.45 m/s,且顶渣成分与夹杂物成分相近,存在卷渣现象。热力学计算表明,钢液与炉渣平衡时钢中[w([Al])]为0.31%~0.37%,[w([Mg])]为0.000 24%~0.000 28%,在MgO?Al2O3生成区域之内。减少RH处理过程卷渣,浇铸过程下渣及控制顶渣和包衬相中MgO质量分数可抑制MgO?Al2O3夹杂物形成。  相似文献   

3.
精炼渣具有脱硫和净化钢液的作用,在炉外精炼渣中采用精炼渣精炼钢水已成为洁净铜生产重要的技术手段。论文根据钢种的质量要求,以脱硫和铜中夹杂物控制为目标,结合水铜主要生产品种,对LF精炼渣终渣成分和造渣制度进行了规划。在水钢目前生产工艺条件下,焊条焊丝钢精炼终渣成分控制CaO/SiO2=2.0~2.5,Al2O3=10%~15%;含铝冷镦钢CaO/Al2O3=1.6—1.8,SiO2〈8%;高碳硬线铜CaO/SiO2=2.5~3.5,Al2O3〈15%。精炼渣造渣制度均可采用转炉出钢渣洗,并在LF精炼炉补加渣料的方式进行。  相似文献   

4.
在实验室小型试验炉内,用CaO-Al2O3-SiO2基精炼渣进行了钢水脱硫的试验,主要研究了精炼渣碱度、渣中Al2O3和CaF2对钢水脱硫的影响.结果表明:精炼渣碱度在2.85~3.45时,脱硫率在80%以上;精炼渣中w(Al2O3)=24%时,脱硫率为83.7%;随精炼渣中CaF2含量的增加,脱硫率先增大后降低.最佳精炼渣组成为:w(CaO)/w(SiO2)=3.0、w(CaF2) =7%、w(MgO)=6%、w(Al2O3)=24%.  相似文献   

5.
在分析"120 t LD→LF→RH→150 mm×150 mm连铸坯→线材轧制"工艺流程生产的弹簧钢55SiCrA的基础上,应用Factsage热力学计算软件进行热力学计算,对精炼工艺进行优化研究.结果 表明:精炼渣系中含SiO241%~ 46%、CaO 36%~41%、Al2O30%~3%、MgO 10%,渣碱度0...  相似文献   

6.
B2O3在CaO-BaO-SiO2-Al2O3-CaF2精炼渣中的作用   总被引:1,自引:0,他引:1  
选择w(CaO)=46%,w(BaO)=10%,w(SiO2)=11.2%,w(Al2O3)=11.6%的渣作基础渣系,将B2q作助熔剂替代CaF2,发现B2q和CaF2的助熔效果相当,B2q可用作环保型助熔剂。将CaO-SiO2-BaO-Al2O3-CaF2作基础渣系,B2O3作酸性氧化物,在碱度(m(CaO+BaO)/m(SiO2+B2O3))为2.5和2.8时,研究B2O3替代SiO2后精炼渣的熔化性能。结果表明,B2O3替代25%的SiO2后就可大幅度降低粘度,并且发现富硼精炼渣的高温熔化性能稳定,粘度值稳定在0.3~0.5Pa·s。在碱度为2.8wt进行脱硫工艺实验,当w(SiO2)=20.6%时渣剂脱硫率为80%,当w(SiO2)=10.3%,w(B2O3)=10.3%时渣剂脱硫率为91.3%,主要原因是熔化性能良好的熔渣有助于提高传质速率。  相似文献   

7.
对LF用低氟泡沫渣的精炼性能进行了实验研究。CaO—A12O3—SiO2系精炼渣的精炼性能和发泡性能存在一定的冲突,需要根据实际生产的要求加以综合考虑。实验中得到合适的LF泡沫精炼渣的组成为,%:CaO45~60,A12O3 30-40.SiO2 10-15,MgO5~10,曼内斯曼指数MI在0.15左右。  相似文献   

8.
在实验室利用MoSi2高温管式电阻炉研究了LF炉精炼渣的成分和精炼渣粒度对Q345钢脱硫的影响。结果表明在精炼渣碱度较高的条件下(R=3~5),随着碱度增大,脱硫率逐渐增加;Al2O3含量在18%~28%,BaO含量在6%~14%,CaF2含量在0~10%的范围内,试验渣有一最佳脱硫率,运用正交分析法对精炼渣进行优化,得出高碱度精炼渣的优化渣系为:R=5,wAl2O3=23%,wBaO=10%,wCaF2=5%,在精炼渣成分不变的条件下,可通过减小精炼渣的粒度来提高钢液的脱硫率。  相似文献   

9.
针对攀钢现行工艺下发生的RH浸渍管粘渣的问题,通过实验及理论计算研究了RH浸渍管的粘渣原因及其对策。对RH浸渍管粘渣物的物相分析结果表明,RH精炼过程中高熔点的镁铝尖晶石相在熔渣中析出是导致RH浸渍管粘渣的根本原因;精炼渣组成对浸渍管粘渣影响的研究表明,提高精炼渣的碱度、增大渣中CaO/Al2O3含量比、降低渣中MgO含量,可以降低渣中高熔点相的作用浓度,改善了熔渣粘度和熔点,有利于减轻RH浸渍管的粘渣。  相似文献   

10.
通过现场取样分析和热力学计算,评价了工业化生产GCr15轴承钢LF精炼工序的脱硫能力.分析了精炼温度、钢中酸溶铝含量、精炼渣的光学碱度对LF精炼过程硫分配比的影响.由于实际精炼过程中脱硫反应未达到平衡,实际测得的硫分配比低于理论计算值.得到了精炼温度为1 830~1 855 K,钢中酸溶铝的质量分数为0.020%~o.050%,精炼渣光学碱度在0.760~0.795范围内,精炼温度、钢中酸溶铝、渣的光学碱度及渣中Al2O3、SiO2含量对硫分配比影响的回归方程,该方程可作为实际生产条件下LF精炼工序脱硫能力的评价依据.根据回归方程,设计了改变精炼渣组成的3因素4水平正交实验,分析了精炼渣二元碱度R2及Al2O3和SiO2含量对硫分配比的影响,得出渣-钢间最优硫分配比的精炼渣组成(质量分数)为:CaO 55.11%,Al2O3 30%,SiO26.89%,MgO 8%,光学碱度为0.777.  相似文献   

11.
通过工业试验研究了Q345钢在钢包精炼过程和RH处理过程中夹杂物成分的变化。结果表明:通过与高碱度、低氧化性渣的反应,钢水中的大部分Al2O3夹杂物转变为具有较低熔点的CaO-Al2O3-MgO夹杂物。研究了RH处理后钙的加入量对夹杂物成分的影响。结果表明:当钢包顶渣的成分控制在w(CaO)=50%~55%、w(CaF2)=5%~8%、w(Al2O3)=25%~30%、w(SiO2)=5%~8%、w(MgO)=5%~10%、w(FeO)<1%,经过钢包精炼和RH处理,每吨钢水中加入0.12 kg钙后,钢水中夹杂物的平均成分处于低熔点(≤1 500℃)区。  相似文献   

12.
通过半球点法研究了B2O3对40.5%-70.0%CaO-19%~45%Al2O3-SiO2-MgO-CaF2五元渣系熔化温度和完全熔化时间的影响。实验结果表明,当渣中CaO含量为40.5%~60%,CaF2 2%-10%,(B2O3%)/(CaF2%)为0.17—0.33时,渣系的熔化温度较不加B2O3的五元渣平均降低30℃,完全熔化时间平均降低49s。合适的多元脱硫精炼渣系的成分为60%CaO,19%-30%Al2O3,≤10%(MgO+SiO2),2%~6%CaF2,(B2O3)/(CaF2)=0.17。  相似文献   

13.
针对水城钢铁(集团)有限责任公司82B硬线钢LF精炼造渣时间长,顶渣结壳现象严重,埋弧效果较差的情况,从炉渣组成和造渣制度两方面进行了分析。在此基础上,改进了LF精炼造渣工艺,即采用CaO-Al2O3型精炼渣代替石灰进行渣洗操作,LF精炼终渣控制训(CaO)/w(SiO2)=2.5~3.5,w(Al2O3)〈15%。试验结果表明:LF精炼渣埋弧效果良好,炉渣表面基本无结壳现象,化渣良好,炉渣的脱硫率高,钢中夹杂物有了较大程度的降低。  相似文献   

14.
借助于银的溶解工艺研究了熔渣的碱度与物化性能 (例如粘度和精炼特性 )的关系。根据渣的碱度讨论了理论评价熔渣成分的基本原则。在 Mo- B2 O3 (Mo=Ca O,Ba O,Na2 O) ,Ca O- RO(RO=B2 O3 ,Si O2 ,Al2 O3 )及 Ca O- Al2 O3 - Ca F2 渣系中 ,利用银的不同溶解度评价了碱性氧化物及与 Ca F2 和 B2 O3 有关的酸性氧化物的相对碱度。通过每种化合物的相对碱性值可以得到复合渣的综合碱度 ,并预测出熔渣的粘度和精炼特性。此外 ,可根据精炼特性的目标值确定渣系的最佳组成 ,并讨论了设计渣系的基本原理。复合渣的粘度和精炼特性的预…  相似文献   

15.
为了研究适合高洁净度高碳钢的LF精炼渣渣系,通过FactSage热力学软件计算精炼渣碱度(R)、(CaO)/(Al2O3)对精炼渣熔点的影响,得出最合适的精炼渣成分。根据热力学计算的精炼渣成分,降低原有渣系的钙铝比,并将优化的渣系成分用于65Mn钢工业试验。结果表明:优化后的精炼渣系成分质量分数为CaO52%~58%、Al2O328%~33%、SiO28%~12%、MgO5%~7%、R=4~6、(CaO)/(Al2O3)=1.5~2;使用该渣系进行工业试验,LF出站时的T.[O]可达7×10-6~13×10-6,RH出站时的T.[O]可达6×10-6~12×10-6;钢中全氧质量分数基本可控制在10×10-6内;65Mn钢卷中的B类细系夹杂均不大于1级,达到高级优质钢要求。  相似文献   

16.
综述了BaO,Li2O,B2O3等替代剂替代精炼渣中CaO,CaF2对脱硫性能的影响,展望了脱硫精炼渣替代剂的前景,为今后对深脱硫精炼渣的研究和应用提供依据和参考。研究结果表明:1)BaO,Li2O不仅有较好的脱硫能力,二者还能降低渣系熔点,增强精炼渣的流动性,并且使用Li2O比BaO效果要好;2)BaO加入量在5%~25%范围内较合适,Li2O在渣中的添加量小于15%较合适;3)B2O3在渣中的加入量在10%以内时可以替代CaF2,减少CaF2对炉衬的侵蚀和对环境的污染(以上为质量分数)。  相似文献   

17.
萤石对环境的污染日益受到重视,为了减少在精炼过程中CaF2的使用量,达到精炼渣低氟、无氟化的目的,开展了相关研究。综述了铝酸钙基精炼渣的性能以及B2O3,Li2O,BaO等替代物对精炼渣熔化温度、黏度以及脱硫能力、耐火材料侵蚀的影响。已有研究表明,使用铝酸钙基精炼渣能够有效降低CaF2的使用量,并具有良好的熔化性、发泡性以及脱硫性能;B2O3,Li2O,BaO等替代物都能够降低精炼渣的熔化温度和黏度,Li2O和BaO的加入增加了渣中O2-的活度,有利于提高精炼渣的脱硫能力。此外,精炼渣黏度的降低也促进了渣金界面反应的发生以及钢液中夹杂物的吸收。  相似文献   

18.
为了研究SWRH82B硬线钢通过控制精炼渣的组成实现夹杂物塑性化的可行性,通过对炼钢过程中各工序的精炼渣和钢液进行取样,并对精炼渣成分、钢液总氧含量以及夹杂物的形貌、尺寸、成分等进行检测分析。结果表明,采用无铝化脱氧,并将精炼渣的碱度控制在0.8~1.2,Al2O3质量分数控制在10%以下时,能使CaO- Al2O3- SiO2系夹杂物成为塑性夹杂物;钢水经过RH真空精炼后夹杂物尺寸变大,并且夹杂物的Al2O3质量分数降低,SiO2质量分数升高,通过相关检测分析了造成此现象的原因,并提出了改进措施。  相似文献   

19.
CaO-Al2O3 渣系对 20CrMoH 齿轮钢中总氧和硫的影响   总被引:1,自引:0,他引:1  
研究分析了CaO-Al2O3精炼渣系对140 t LD Al直接脱氧齿轮钢T[O]和[S]的影响.结果表明,控制钢包渣中CaO/Al2O3为2.5,可使T[O]降低到0.001 3%;当渣中CaF2为5%,CaO/Al2O3为2~3时,能够增强炉渣吸收氧化物夹杂的能力;当(SiO2)增至6%~9%时,其含量变化对炉渣脱硫性能影响不大.当(siO2)为5%~10%时,较佳的精炼渣成分为(%):60~65 CaO、20~30 Al2O3、5~10 MgO、5 CaF2.  相似文献   

20.
针对含铝钢初炼钢水[C]低、[O]高的特点,提出采用CaO-Al2O3-CaF2系精炼渣,组分中CaO/Al2O3=1.7~1.9;出钢过程采用渣洗工艺向钢包加入大部分精炼渣,将连铸返回的热态精炼渣倒入精炼钢包中,缩短精炼成渣时间,保证足够的白渣和软吹时间。冶炼20Mn2A时,脱S率达到77.13%,铸坯T[O]为21×10^-6,铸坯中[Als]为0.026%,达到了良好的冶金效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号