首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biomorphic C/SiC composites were fabricated from different kinds of wood by liquid silicon infiltration (LSI) following a two-step process. In the first-step, the wood is converted into carbon preforms by pyrolysis in a nitrogen atmosphere. The carbon preforms are then infiltrated by silicon melt at 1,560°C under vacuum to fabricate C/SiC composites. The mechanical properties of the C/SiC composites were characterized by flexural tests at ambient temperature, 1,000, and 1,300°C, and the relationship between mechanical properties and microstructure was analyzed. The flexural strength of the biomorphic composites was strongly dependent on the properties of the carbon preforms and the degree of silicon infiltration. The flexural strength increased with increasing SiC content and bulk density of composite, and with decreasing porosity in the C/SiC composite. An analysis of fractographs of fractured C/SiC composites showed a cleavage type fracture, indicating brittle fracture behavior.  相似文献   

2.
Nicalon-fibre-reinforced SiC composites were fabricated by combining polymer solution infiltration (PSI) and chemical vapour infiltration (CVI). Effect of multilayer coating on mechanical properties of the composites was investigated. The coatings consisted of chemically vapour deposited (CVD) C and SiC and were designed to enhance fibre pull-out in the composites. It was found that the flexural strength and fracture toughness of the composites were increased with the number of coating layers and was a maximum for 7 coating layers which consisted of C/SiC/C/SiC/C/SiC/C. Typical flexural strength and fracture toughness of the composites were 300 MPa and 14.5 MPa m1/2, respectively.  相似文献   

3.
《复合材料学报》2008,25(5):91-97
以针刺碳纤维整体毡为预制体,采用化学气相渗透工艺对预制体纤维进行PyC/SiC/TaC的多层复合模式的涂层改性, 然后采用化学气相渗透和热固性树脂浸渍-化进行增密,制备出新型C/C复合材料。对复合材料的微观结构和力学性能进行了研究。结果表明:包覆在碳纤维表面的PyC/SiC/TaC多层结构均匀致密、无裂纹,在C/C复合材料中形成空间管状网络结构;改性后C/C复合材料的抗弯强度和韧性均大大提高, 平均抗弯强度达到522 MPa,断裂位移达到1.19mm;复合材料弯曲断裂形式表现为脆性断裂,经过2000℃高温热处理以后,复合材料的抗弯强度下降,但最大断裂位移增大,弯曲断裂形式由脆性断裂转变为良好的假塑性断裂。   相似文献   

4.
碳化硅(SiC)陶瓷具有优异的力学性能, 但是其断裂韧性相对较低。石墨烯的引入有望解决碳化硅陶瓷的断裂韧性较低的问题。本研究采用热压烧结工艺, 制备了具有不同还原-氧化石墨烯(rGO)掺入量的SiC复合材料。经过2050℃保温、40 MPa保压1 h后, 所制备的复合材料均烧结致密。对复合材料中rGO的掺入量、微观结构和力学性能的相互关系进行分析和讨论。加入4wt%的rGO后, 复合材料的三点抗弯强度达到564 MPa, 比热压SiC陶瓷提高了6%; 断裂韧性达到4.02 MPa•m1/2, 比热压SiC陶瓷提高了54%。加入6wt%的rGO后, 复合材料的三点抗弯强度达到420 MPa, 略低于热压SiC陶瓷, 但其断裂韧性达到4.56 MPa•m1/2, 比热压SiC陶瓷提高了75%。裂纹扩展微观结果显示, 主要增韧机理有裂纹偏转、裂纹桥连和rGO片的拔出。  相似文献   

5.
利用三维编织炭纤维预制件通过先驱体浸渍裂解法制备C/SiC复合材料。研究了热解碳(PyC)/SiC界面相对复合材料的微观结构和力学性能的影响。弯曲性能通过三点弯曲法测试,复合材料的断口和抛光面通过扫描电镜观察。结果表明:通过等温化学气相沉积法在纤维表面沉积PyC/SiC界面相以后,复合材料的三点抗弯强度从46MPa提高到247MPa。沉积界面的复合材料断口有明显的纤维拔出现象,纤维与基体之间的结合强度适当,起到了增韧作用;而未沉积界面相复合材料的断口光滑、平整,几乎没有纤维拔出,纤维在热解过程中受到严重的化学损伤,性能下降严重,材料表现为典型的脆性断裂。  相似文献   

6.
碳化硅纤维增强碳化硅复合材料(SiC/SiC)是极具前景的高温结构材料。通过先驱体浸渍裂解(PIP)工艺分别制备了PyC界面和CNTs界面SiC/SiC复合材料, 对两种SiC/SiC复合材料的整体力学性能以及界面剪切强度等进行了测试表征, 并对材料中裂纹的产生与扩展进行了原位观测。结果表明, 两种界面SiC/SiC复合材料弯曲强度相近, 但PyC界面SiC/SiC复合材料的断裂韧性约为CNTs界面SiC/SiC复合材料的两倍。在PyC界面SiC/SiC复合材料中, 裂纹沿纤维-基体界面扩展, PyC涂层能够偏转或阻止裂纹, 材料呈现伪塑性断裂特征; 而在CNTs界面SiC/SiC复合材料中, 裂纹在扩展路径上遇到界面并不偏转, 初始裂纹最终发展为主裂纹, 材料呈现脆性断裂模式。  相似文献   

7.
对含有几种典型界面结构和SiC纳米线的CVI-SiC/SiC复合材料的弯曲性能和断裂韧性进行了比较研究. 研究表明: 界面涂层对SiC/SiC的力学性能至关重要, 120nm厚的碳界面涂层使材料的强度与韧性都增加一倍; 在用140nm厚的SiC层将该碳层分为更薄的两层, 形成C/SiC/C多层界面涂层时, 材料的强度没有明显的变化, 而断裂韧性则略有提高. 对基体中弥散分布有SiC纳米线的SiC/SiC的力学性能研究表明, SiC纳米线具有非常高的强化效率, 使SiC/SiC复合材料具有更高的强度和韧性.  相似文献   

8.
采用化学气相反应法在C/C复合材料表面制备了SiC涂层,利用X射线衍射仪、扫描电镜及能谱等分析手段研究了涂层的形貌和结构,并采用三点弯曲试验研究了材料的力学性能,讨论了SiC涂层及制备工艺对复合材料断裂行为的影响.结果表明:涂层后材料的弯曲强度和最大断裂位移明显增大.未涂层C/C复合材料的平均弯曲强度为172.4MPa,而涂层后C/C复合材料的平均弯曲强度为239.8MPa,弯曲强度提高了39.1%.涂层试样强度的提高主要与制备过程中部分蒸气扩散渗透反应引起的界面强化及SiC颗粒的增强作用有关.此外,涂层后材料的断裂模式未发生明显转变,断裂过程中试样表现出一定的假塑性和韧性断裂特征.  相似文献   

9.
采用流延-化学气相渗透(TC-CVI)工艺制备SiC晶须(SiC_W)/SiC层状陶瓷复合材料,研究了SiC_W含量对层状陶瓷复合材料力学性能和微观结构的影响,探讨了SiC_W/SiC层状陶瓷复合材料的强韧化机制。结果表明:TC-CVI工艺能够有效提高复合材料中晶须含量(40vol%),减少制备过程对晶须损伤,所制备的SiC_W/SiC层状陶瓷复合材料具有合适的层内及层间界面结合强度。随着SiC_W含量增加,层状陶瓷复合材料的密度和力学性能均有明显提高。含40vol%晶须的SiC_W/SiC层状陶瓷复合材料的密度、弯曲强度和断裂韧性均比含25vol%晶须的分别提高了8.4%、30.8%和26.7%。断口形貌中能够观察到层间及层内的裂纹偏转,层内的裂纹桥接和晶须拔出等,这些为主要的增韧机制。高含量SiC_W及合适的层间和层内界面结合强度,对提高SiC_W/SiC层状陶瓷复合材料强韧性有明显作用。  相似文献   

10.
在C/C 复合材料表面制备了MoSi2-SiC 抗氧化涂层, 分析了涂层工艺对C/C 复合材料组织的影响, 测试了材料的室温弯曲力学性能。结果表明, 该工艺在C/C 复合材料表面生成抗氧化涂层的同时, 基材内部的层间和纤维束界面, 以及孔隙周围也被硅化。C/C 复合材料经涂层工艺处理后, 弯曲断裂行为发生改变, 弯曲强度明显升高,塑性有一定程度的降低。   相似文献   

11.
The effects of the ceramic particle material on the flexural Weibull modulus, characteristic flexural strength, and damage parameters of particulate-reinforced metal-matrix composites were studied. Three high volume fill composites were fabricated using the pressure infusion casting technique: they were reinforced with SiC, B4C, and -Al2O3 particles. Four-point bend testing determined the effects of particle material on flexural strength and elastic modulus. It was found the B4C and SiC composites had similar flexural Weibull modulus, low deflection, and similar damage parameters. The -Al2O3 reinforced composite had the largest flexural Weibull modulus, highest deflection at failure, and largest damage parameter. Extensive microstructural and SEM fractographs were taken of the as-processes and fractured specimens. The mechanisms leading to the dominant failure modes are discussed.  相似文献   

12.
Finite element method (FEM) analysis and experimental studies are undertaken on the design of the fiber volume ratio in silicon carbide (SiC) fiber-reinforced SiC composites under indentation contact stresses. Boron nitride (BN)/Pyrocarbon (PyC) are selected as the coating materials for the SiC fiber. Various SiC matrix/coating/fiber/coating/matrix structures are modeled by introducing a woven fiber layer in the SiC matrix. Especially, this study attempts to find the optimum fiber volume ratio in SiC fiber-reinforced SiC ceramics under Hertzian stress. The analysis is performed by changing the fiber type, fiber volume ratio, coating material, number of coating layers, and stacking sequence of the coating layers. The variation in the stress for composites in relation to the fiber volume ratio in the contact axial or radial direction is also analyzed. The same structures are fabricated experimentally by a hot process, and the mechanical behaviors regarding the load–displacement are evaluated using the Hertzian indentation method. Various SiC matrix/coating/fiber/coating/matrix structures are fabricated, and mechanical characterization is performed by changing the coating layer, according to the introduction (or omission) of the coating layer, and the number of woven fiber mats. The results show that the damage mode changes from Hertzian stress to flexural stress as the fiber volume ratio increases in composites because of the decreased matrix volume fraction, which intensifies the radial crack damage. The result significantly indicates that the optimum fiber volume ratio in SiC fiber-reinforced SiC ceramics should be designed for inhibiting the flexural stress.  相似文献   

13.
Three-dimensional braided carbon fiber reinforced silicon carbide composites (3D-B Cf/SiC) were prepared through eight cycles of vacuum infiltration of polycarbosilane (PCS) and subsequent pyrolysis under an inert atmosphere. The influences of heating rate and pyrolysis temperature on the microstructure and mechanical properties of Cf/SiC were discussed. It was found that the heating rate had great effect on the mechanical properties of Cf/SiC composites. With the increase of heating rate, the density of Cf/SiC composites increased and the interfacial bonding was weakened. As a result, the flexural strength of Cf/SiC was enhanced from 145 to 480 MPa when the heating rate was increased from 0.5 to 15 °C/min. The results showed that the flexural strength of the Cf/SiC composites fabricated at a heating rate of 15 °C/min could be increased from 480 to 557 MPa if the pyrolysis temperature of the sixth cycle was elevated from 1200 to 1600 °C, which was also attributed to the desirable interfacial structure and increased density. When tested at 1300 °C in vacuum, the Cf/SiC showed higher flexural strength (680 MPa) than that (557 MPa) at room temperature.  相似文献   

14.
The synthesis route, microstructure and properties of ZrB2–ZrC–SiC composites prepared from a mixture of Zr–B4C–Si powders by in situ reactive synthesis were investigated. The reactive path and synthesized mechanism of ZrB2–ZrC–SiC composite were studied through series of pressureless heat treatments ranging from 800 °C to 1700 °C in argon. The in situ ZrB2–ZrC–SiC composites were fabricated under different synthesis processing. The one with 88.4% relative density performed poorly in mechanical properties due to the occurring of self-propagating high-temperature synthesis (SHS). The fully dense ZrB2–ZrC–SiC composite was obtained under the optimized synthesis processing without SHS reactions. Its Vickers hardness, flexural strength and fracture toughness were 20.22 ± 0.56 GPa, 526 ± 9 MPa and 6.70 ± 0.20 MPa m1/2, respectively.  相似文献   

15.
以聚碳硅烷(PCS)/二乙烯基苯(DVB)为先驱体,经8个周期的反复真空浸渍-交联-裂解处理制备出三维编织碳纤维增强碳化硅(3D-B Cf/SiC)复合材料,考察了裂解工艺对材料结构与性能的影响。结果表明:提高裂解升温速率可以提高材料密度,形成较理想的界面结合,从而提高材料的力学性能。裂解温度对材料性能也有较大的影响,Cf/SiC复合材料在第6个周期采用1600℃ 裂解可以弱化纤维与基体之间的界面,提高材料致密度,材料的力学性能也得到较大改善。裂解升温速率为15℃/min,第6个周期采用1600℃裂解制备的Cf/SiC材料性能较好,弯曲强度达到556.7 MPa。   相似文献   

16.
采用溶胶-凝胶分散和热压烧结制备了短切碳纤维(CFs)/Fe3Al-Al2O3复合材料。分别通过电化学镀Cu和化学气相沉积SiC对CFs表面修饰和改性,研究了Cu镀层和SiC涂层对CFs/Fe3Al-Al2O3复合材料显微组织、相组成、力学性能及断裂行为的影响。结果表明,未修饰的CFs在Fe3Al-Al2O3基体中受到严重侵蚀,CFs/Fe3Al-Al2O3复合材料致密度低,抗弯强度仅为239.0 MPa,与Fe3Al-Al2O3强度相当;表面镀Cu可有效保护CFs不被侵蚀,同时提高了CFs/Fe3Al-Al2O3复合材料的烧结致密性和界面结合强度,从而明显提高了复合材料的断裂强度,但断裂过程中纤维拔出较短;CFs表面沉积SiC的CFs/Fe3Al-Al2O3复合材料组织均匀致密,表面涂层完整,且与纤维及基体之间结合力相当,断裂过程中,涂层既可随纤维一起拔出基体,也可与CFs分离而留在基体之中,SiC涂层与纤维及基体之间的弱相互作用很大程度上促进了纤维脱黏和拔出,从而促进CFs/Fe3Al-Al2O3复合材料韧化所需的渐进破坏机制。   相似文献   

17.
Carbon fiber reinforced multilayered (PyC–SiC)n matrix (C/(PyC–SiC)n) composites were prepared by isothermal chemical vapor infiltration. The phase compositions, microstructures and mechanical properties of the composites were investigated. The results show that the multilayered matrix consists of alternate layers of PyC and β-SiC deposited on carbon fibers. The flexural strength and toughness of C/(PyC–SiC)n composites with a density of 1.43 g/cm3 are 204.4 MPa and 3028 kJ/m3 respectively, which are 63.4% and 133.3% higher than those of carbon/carbon composites with a density of 1.75 g/cm3. The enhanced mechanical properties of C/(PyC–SiC)n composites are attributed to the presence of multilayered (PyC–SiC)n matrix. Cracks deflect and propagate at both fiber/matrix and PyC–SiC interfaces resulting in a step-like fracture mode, which is conducive to fracture energy dissipation. These results demonstrate that the C/(PyC–SiC)n composite is a promising structural material with low density and high flexural strength and toughness.  相似文献   

18.
Three-dimensional (3D) silicon carbide fiber reinforced silicon carbide matrix (SiCf/SiC) composites, employing KD-1 SiC fibers (from National University of Defense Technology, China) as reinforcements, were fabricated by a combining chemical vapor infiltration (CVI) and vapor silicon infiltration (VSI) process. The microstructure and properties of the as prepared SiCf/SiC composites were studied. The results show that the density and open porosity of the as prepared SiCf/SiC composites are 2.1 g/cm3 and 7.7%, respectively. The SiC fibers are not severely damaged during the VSI process. And the SiC fibers adhere to the matrix with a weak interface, therefore the SiCf/SiC composites exhibit non-catastrophic failure behavior with the flexural strength of 270 MPa, fracture toughness of 11.4 MPa·m1/2 and shear strength of 25.7 MPa at ambient conditions. Moreover, the flexural strength decreases sharply at the temperature higher than 1200 °C. In addition, the thermal conductivity is 10.6 W/mk at room temperature.  相似文献   

19.
C/SiC复合材料应力氧化失效机理   总被引:2,自引:0,他引:2  
研究了干氧和湿氧两种气氛、疲劳和蠕变两种应力下C/SiC复合材料在1300℃的应力氧化行为. 试验结果和断口形貌SEM分析表明: C/SiC复合材料在疲劳应力下比在蠕变应力下具有更强的抗氧化能力和更长的持续时间; 干氧环境中的蠕变试样以C纤维氧化失效为主; 水蒸气的存在加剧了SiC基体的氧化, 并且使受蠕变应力的C/SiC复合材料以SiC基体氧化失效为主.  相似文献   

20.
制备了由聚碳硅烷(PCS)为先驱体裂解形成的纳米SiC增强的B4C基复合材料,并与直接球磨混合法制备的纳米SiC增强的B4C基复合材料进行了对比研究。实验结果表明,先驱体法制备的复合材料形成一种复杂的晶内/晶间结构;B4C内部的纳米SiC和Al2O3内部的少量纳米SiC、晶界处的层片状SiC、B4C晶粒内部的SiC亚晶界结构。材料的断裂方式以穿晶断裂为主,形成晶内裂纹扩展路径,增强了材料的韧性,采用PCS为先驱体工艺制备高性能的纳米复相陶瓷,其组织均匀性、致密度和力学性能均优于直接机械混合制备的纳米复合材料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号