首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Composites Part A》2001,32(6):763-774
A study has been made of the effect of cooling rate on interlaminar fracture toughness of unidirectional carbon fibre–polyetheretherketone (PEEK) matrix composites. It is shown that the propagation values of both mode I and II propagation interlaminar fracture toughness increased with increasing cooling rate towards a saturation level for the range of cooling rate studied. The cooling rate dependency of the composite interlaminar fracture toughness is the result of complex interactions between two important properties, namely the matrix ductility and fibre–matrix interface bond strength. These two properties varied totally in an opposite manner against cooling rate through its effect on crystallinity: matrix ductility varied directly proportional to cooling rate while the converse is true for interface bond strength. The extent of plastic deformation of PEEK matrix contributed a predominant part to composite toughness, while an adequate interface bond is required to allow matrix deformation to take place to a full degree. A practical implication is that these two properties need to be optimised using an appropriate cooling rate to produce composites possessing high interlaminar fracture resistance.  相似文献   

2.
《Composites Part A》2001,32(6):775-785
The effect of cooling rate on impact damage performance of carbon fibre/polyether ether ketone (PEEK) matrix composite is characterised based on the instrumented drop-weight impact test, scanning acoustic microscopy (SAM) damage evaluation and compression-after-impact (CAI) test. Judging from the incipient impact load, incipient impact energy and total damage area, the ability to resist damage initiation upon impact was higher in the order of fast-cooled carbon/PEEK, slow-cooled carbon/PEEK and carbon/epoxy laminates. Furthermore, the threshold impact energy was higher and the CAI strength reduction rate was lower for the fast-cooled specimen than the slow-cooled counterpart, strongly indicating higher impact damage tolerance of the former system. The present study demonstrates that the impact damage performance and other important properties of carbon/PEEK composites can be optimised, if not maximised, by proper control of processing conditions, especially the cooling rate.  相似文献   

3.
Abstract

In this work, ozone modification method and air oxidation were used for the surface treatment of polyacrylonitrile (PAN) based carbon fibre. The surface characteristics of carbon fibres were characterised by X-ray photoelectron spectroscopy. The interfacial properties of carbon fibre reinforced PEEK (CF/PEEK) composites were investigated by means of the single fibre pull-out tests. As a result, it was found that IFSS values of the composites with ozone treated carbon fibre are increased by 60% compared with that without treatment. X-ray photoelectron spectroscopy results show that ozone treatment increases the amount of carboxyl groups on carbon fibre surface, thus the interfacial adhesion between carbon fibre and PEEK matrix is effectively promoted. The effect of surface treatment of carbon fibres on the tribological properties of CF/PEEK composites was comparatively investigated. Experimental results revealed that surface treatment can effectively improve the interfacial adhesion between carbon fibre and PEEK matrix. Thus the wear resistance was significantly improved.  相似文献   

4.
Natural fibre-reinforced polymers can exhibit very different mechanical performances and environmental aging resistances depending on their interphase properties, but most studies have been focused on fibre surface treatment. Here, investigations of the effect of maleic anhydride grafted polypropylene (MAHgPP) coupling agents on the properties of jute fibre/polypropylene (PP) composites have been considered with two kinds of matrices (PP1 and PP2). Both mechanical behaviour of random short fibre composites and micro-mechanical properties of single fibre model composites were examined. Taking into account interfacial properties, a modified rule of mixture (ROM) theory is formulated which fits well to the experimental results. The addition of 2 wt% MAHgPP to polypropylene matrices can significantly improve the adhesion strength with jute fibres and in turn the mechanical properties of composites. We found that the intrinsic tensile properties of jute fibre are proportional to the fibre’s cross-sectional area, which is associated with its perfect circle shape, suggesting the jute fibre’s special statistical tensile properties. We also characterised the hydrophilic character of natural fibres and, moreover, humidity environmental aging effects. The theoretical results are found to coincide fairly well with the experimental data and the major reason of composite tensile strength increase in humidity aging conditions can be attributed to both improved polymer–matrix and interfacial adhesion strength.  相似文献   

5.
以聚醚醚酮(PEEK)为基体树脂、碳纤维(CF)和氮化铝(AlN)为填料,通过模压成型的方法制备了抗静电耐热型CF-AlN/PEEK复合材料。采用高阻计、导热系数测定仪、热失重、差示扫描量热仪和SEM研究了CF-AlN/PEEK复合材料的抗静电性能、热性能、力学性能以及降温速率对复合材料性能的影响,并探讨了后期热处理对力学性能的影响。结果表明:当CF和AlN的质量分数均为10%时,CF-AlN/PEEK复合材料的性能较优,其表面电阻率达到108 Ω,比PEEK的表面电阻率提高了6个数量级;导热系数为0.418 W·(m·K)-1,初始分解温度高达573℃;拉伸强度提高了40.4%;降温速率越低,复合材料的熔点越高;后期热处理会影响CF-AlN/PEEK复合材料的力学性能,在270℃下热处理2 h,其拉伸强度可达146 MPa,表明在生产过程中,加工温度是影响复合材料性能的因素之一。   相似文献   

6.
Short glass (GF) and carbon fibre (CF) reinforced poly-ether-ether-ketone (PEEK) composites were prepared by injection moulding and then microstructurally characterized. Their mechanical behaviour was determined by two different methods: a classical unidirectional tensile test and an immersion ultrasonic technique. The reinforcing effect of fibres is discussed in the context of the theory of reinforcement of Bowyer and Bader. Interfacial shear strength and critical fibre length at break are calculated for both PEEK/GF and PEEK/CF composites. Examinations of fracture surfaces of uniaxial tensile specimens revealed a higher adhesion of carbon fibres to PEEK matrix in regards to the adhesion concerning glass fibre-PEEK interfaces, which is in agreement with the results provided by the model. Compatibility of ultrasonic and tensile results is reported.  相似文献   

7.
《Composites》1994,25(7):752-756
Microcomposite test methods were used to measure the properties of the interphase of HTA/922 carbon/epoxy composites. The shear strength of the interphase resin is lower than that of the bulk resin. It is suggested that the discrepancy arises from changes in resin chemistry at the fibre/matrix interface. Bulk resin samples where the proportions of the constituents had been altered were tested. Resin with a reduced level of hardener matched the mechanical behaviour of the interphase resin. It is concluded that, for the system examined, the interphase resin had a lower hardener concentration than the bulk resin.  相似文献   

8.
Polychlorotrifluoroethylene (PCTFE) and PCTFE copolymeric films are being used in the electronic packaging industry as insulating dielectric layers between microwave circuits. Because these films are semicrystalline and, in this application, are being used as hot-melt adhesives, the cooling rate is an important processing variable, affecting the crystallinity of the PCTFE films which, in turn, affect many properties including dielectric characteristics and mechanical properties. In this study, the crystallinity of PCTFE and PCTFE copolymeric films as a function of cooling rate was characterized by wide-angle X-ray scattering. As expected, the degree of crystallinity decreased as the cooling rate increased. Analysis of mechanical properties as a function of cooling rate by tensile testing showed that the mechanical behaviour of the films became more ductile with faster cooling rates. Because the cooling rate has also been shown to significantly affect adhesion in previous studies, the effect of cooling rate on the bond strength between PCTFE and a glass substrate was analysed. Peel testing was performed on PCTFE/glass laminates revealing that the adhesive bond strength increased as the cooling rate was increased. Thus, optimum adhesion is achieved with faster cooling rates. This was attributed to the higher fracture energy and greater ductility of the adhesive. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

9.
The purpose of this study is to provide insight into the microstructural factors that affect the flexural fatigue performance of carbon-fibre-reinforced poly(ether ehter ketone) (PEEK) composites. Specifically, the effect of the degree of crystallinity on the mechanical properties is examined at two crystallinity levels of the as-received composites (35%) and of quenched composites (10%). Higher static flexural strength and modulus as well as longer fatigue life are observed for the higher crystallinity level. By varying the loading angle with respect to the fibre direction it is shown that the crystallinity effect is not matrix dependent alone. Rather, a strong effect is evident in the fibre direction, which is attributed to the influence of the transcrystalline layer formed on the fibre surface in the high-crystallinity material. As a result, the longitudinal fatigue life at 1·7GPa of the 35% crystallinity material is three orders of magnitude higher than that of the 10% crystallinity composite.  相似文献   

10.
As part of a study of the interfacial bond in epoxy resin-carbon fibre composites, scanning secondary ion mass spectrometry (Scanning SIMS) was used to study fracture surfaces parallel to the fibre direction in unidirectional composites and the way in which these surfaces varied with an increasing level of fibre surface treatment (electrolytic oxidation). Interlaminar shear strength (ILSS) and tensile strength of the composites was also measured. Chemical maps obtained, using Scanning SIMS from the transverse fracture surfaces showed that at low levels of fibre surface treatment failure occurred at the fibre-resin interface or within the fibre, whilst at the higher levels of surface treatment failure took place largely within the resin leaving a thin overlayer adhering to the fibre. It is proposed that this failure within the resin explains the presence of the plateau observed in the ILSS against surface treatment curve at higher levels of treatment. Over the range of fibre surface treatments in the study, variations in the level had little effect on the tensile strength of the composites.  相似文献   

11.
Textile-reinforced composites have become increasingly attractive as protection materials for various applications, including sports. In such applications it is crucial to maintain both strong adhesion at fibre–matrix interface and high interfacial fracture toughness, which influence mechanical performance of composites as well as their energy-absorption capacity. Surface treatment of reinforcing fibres has been widely used to achieve satisfactory fibre–matrix adhesion. However, most studies till date focused on the overall composite performance rather than on the interface properties of a single fibre/epoxy system. In this study, carbon fibres were treated by mixed acids for different durations, and resulting adhesion strength at the interface between them and epoxy resin as well as their tensile strength were measured in a microbond and microtensile tests, respectively. The interfacial fracture toughness was also analysed. The results show that after an optimum 15–30 min surface treatment, both interfacial shear strength and fracture toughness of the interface were improved alongside with an increased tensile strength of single fibre. However, a prolonged surface treatment resulted in a reduction of both fibre tensile strength and fracture toughness of the interface due to induced surface damage.  相似文献   

12.
Modelling studies have indicated a strong effect of the rate of deformation on the tensile strength of composites with a weak fibre/matrix interface. At high rates, the mode of deformation changes from a fibre pull-out to a fibre breaking mechanism typical of good adhesion composites. As a result, the mechanical properties become independent of those of the fibre/matrix interface. The model predictions are of great importance because they allow a straightforward identification of composites with poor fibre-matrix adhesion.  相似文献   

13.
The role of interfacial adhesion between fibre and matrix on the residual strength behaviour of carbon-fibre-reinforced metal laminates (FRMLs) has been investigated. Differences in fibre/matrix adhesion were achieved by using treated and untreated carbon fibres in an epoxy resin system. Mechanical characterisation tests were conducted on bulk composite specimens to determine various properties such as interlaminar shear strength (ILSS) and transverse tension strength which clearly illustrate the difference in fibre/matrix interfacial adhesion. Scanning electron microscopy confirmed the difference in fracture surfaces, the untreated fibre composites showing interfacial failure while the treated fibre composites showed matrix failure. No clear differences were found for the mechanical properties such as tensile strength and Young's modulus of the FRMLs despite the differences in the bulk composite properties. A reduction of 7·5% in the apparent value of the ILSS was identified for the untreated fibre laminates by both three-point and five-point bend tests. Residual strength and blunt notch tests showed remarkable increases in strength for the untreated fibre specimens over the treated ones. Increases of up to 20% and 14% were found for specimens with a circular hole and saw cut, respectively. The increase in strength is attributed to the promotion of fibre/matrix splitting and large delamination zones in the untreated fibre specimens owing to the weak fibre/matrix interface.  相似文献   

14.
The tensile strength of epoxy resin reinforced with random-planar orientation of short carbon and glass fibres increased as the length of the reinforcing fibres increased, and the increase in tensile strength remained almost unchanged after the fibre length reached a certain level. The tensile strength of composites at any fibre length could be estimated by taking the strain rate and temperature dependence of both the yield shear strength at the fibre-matrix interphase and the mean critical fibre length into consideration. The tensile strength of the hybrid composite could be estimated by the additive rule of hybrid mixtures, using the tensile strength of both composites.  相似文献   

15.
The micromechanics of stress transfer is presented for the fibre fragmentation test of microcomposites containing debonded fibre–matrix interface and yielded matrix at the interface region. Results from the parametric study are discussed for carbon fibre composites containing epoxy and polyetheretherketone (PEEK) matrices, representing respectively typical brittle debonding and matrix yielding behaviour at the interface region. The stress transfer phenomena are characterized for the two interface failure processes. The sequence of interface failure and fibre fracture as a function of applied stress are also identified. Maximum debonded and yielded interface lengths are obtained above which a fibre will fracture into smaller lengths. There are also threshold fibre fragment lengths above which fibre will fracture without interface debonding or matrix yielding. The applied stresses for these conditions are governed by three strength properties of the composite constituents, namely interface shear bond strength, matrix shear yield strength and fibre tensile strength for given elastic constants of the fibre and matrix, and the geometric factors of the microcomposite. The ineffective length, a measure of the efficiency of stress transfer across the fibre–matrix interface, is shown to strongly depend on the extent to which these failure mechanisms take place at the interface region. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

16.
聚芳醚酮(poly(aryl ether ketone),PAEK)热塑性复合材料因其突出的韧性、耐老化性能、耐疲劳性能,以及成型加工低成本、高效率、可回收等一系列优势,得以替代部分传统热固性复合材料,并已在国外航空等高端工业领域取得成功应用。PAEK是一种半结晶高聚物,复合材料不同的成型工艺条件导致树脂基体聚集态结构的差异,对其力学性能、耐老化性能等均存在显著的影响。对国产PAEK树脂的结晶动力学进行了研究,通过控制成型降温条件,采用模压工艺制备了树脂结晶度不同的连续碳纤维增强复合材料,并对其进行了湿热老化处理,评价了老化处理前后复合材料的弯曲性能。结果表明:采用较大的降温速率能够提高树脂的结晶速率,但会降低树脂的结晶度。在随炉冷却、空气冷却和水冷却三种不同的降温条件下,制备的复合材料结晶度分别约为36.3%,29.7%,26.5%,结晶度的显著差别导致复合材料的弯曲强度随结晶度的降低而减小。经湿热老化处理240 h后的弯曲强度保留率分别为88.8%,86.7%,86.6%,较高的结晶度能够较好地抵抗水对复合材料界面的破坏,提升复合材料的耐湿热老化性能。  相似文献   

17.
《Composites Part A》2001,32(3-4):331-342
The properties of the interphase between Twaron® aramid fibres and polymer matrix systems can be optimized by a surface treatment process of the fibres. The relation between this surface treatment, the resulting chemical and physical surface structure, as measured with XPS, IGC and SFM, and the adhesion strength in fibre–epoxy systems, as measured with Raman spectroscopy and single-filament pull-out experiments, has been established and related to the macromechanical data of real composites. The concept of local bond strength was used and the fibre–epoxy failure mechanism investigated.  相似文献   

18.
《Composites》1995,26(12):841-848
Pultrusions were made with carbon fibres and an epoxy resin. Three different curing agents were used, so that the matrices were resins with different glass transition temperatures. The composites were tested for shear strength at different temperatures, so that the effect of the resin shear strength on composite shear strength could be observed, with a fixed fibre architecture. It was found that the composite was always much stronger than the resin both for the 0 and 90° fracture modes. The 90° fracture surfaces contained many broken fibres, and shear hackles were observed in the resin-rich regions. These suggested that shear failure (rather than tensile failure) took place in the Iosipescu test for the 90° specimens. It was concluded that the fibre architecture played a dominant role in the composite shear strength, with interphase effects being involved also.  相似文献   

19.
The main objective of this fundamental study was to investigate effects of processing conditions and resulting matrix morphology on interfacial bond strength of fibre reinforced thermoplastic composites. Using a hot stage microscope, single fibre pull-out samples were produced with T700S high strength carbon fibre and two semicrystalline thermoplastic matrices, polyphenylene sulphide (PPS) and polyethylene terephthalate (PET), respectively. Processing temperatures and cooling histories were the major variables in sample preparation. The T700S fibre had no clear effect on the surrounding PPS and PET matrix morphology, as long as direct cooling at constant rates was selected. A transcrystalline phase around the fibres could be induced in the T700S/PPS system, if isothermal crystallization was carried out at 227°C. Fibre pull-out tests were conducted at room temperature and two basic failure paths were observed, i.e. debonding at the fibre-matrix interface and cohesive failure of the matrix close to the fibre surface. The results indicate that slow cooling rate and a resulting coarse spherulitic morphology around the fibres correlate with high interfacial shear strength. In fact somewhat higher strength values were obtained for samples with transcrystalline layers around the fibres.  相似文献   

20.
Three different PAN based carbon fibres (Toray T600S, T700S and Tenax STS5631) were recycled from epoxy resin/carbon fibre composites using supercritical n-propanol. The recycled carbon fibres were characterised using single fibre tensile tests, SEM, XPS and micro-droplet test. The tensile strength and modulus of the recycled carbon fibre was very similar to the corresponding as-received carbon fibres. However, the surface oxygen concentration decreased significantly, which caused a reduction of the interfacial shear strength with epoxy resin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号