首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Theranostics, a combination of therapy and diagnostics, is a field of personalized medicine involving the use of the same or similar radiopharmaceutical agents for the diagnosis and treatment of patients. Prostate-specific membrane antigen (PSMA) is a promising theranostic target for the treatment of prostate cancers. Diagnostic PSMA radiopharmaceuticals are currently used for staging and diagnosis of prostate cancers, and imaging can predict response to therapeutic PSMA radiopharmaceuticals. While mainly used in the setting of metastatic, castrate-resistant disease, clinical trials are investigating the use of PSMA-based therapy at earlier stages, including in hormone-sensitive or hormone-naïve prostate cancers, and in oligometastatic prostate cancers. This review explores the use of PSMA as a theranostic target and investigates the potential use of PSMA in earlier stage disease, including hormone-sensitive metastatic prostate cancer, and oligometastatic prostate cancer.  相似文献   

2.
Prostate cancer cells adhere to a tumor basement membrane, while secretory epithelial cells reside in a suprabasal cell compartment. Since tumor cells are derived from suprabasal epithelial cells, they experience de-novo substratum adhesion in the context of oncogenesis. We therefore analyzed whether cell-matrix adhesion could affect the protein expression and activity of the AR. In this study, AR protein expression declined upon suspension of BPH-1-AR cells, but not in PC-3-AR cells shown by Western blot. In a time course study, BPH-1 cell lost AR expression within 6 hours, and the synthetic androgen, R1881 reduced the loss of AR expression. We further explored the mechanism of AR loss in suspended BPH-1 cells. BPH-1-AR cells underwent apoptosis (anoikis) when suspended for 2 – 5 hours. Suspension did not induce significant apoptosis or decreasing of AR expression in PC-3 cells. Inhibition of apoptosis in suspended BPH-1-AR cells, either by expression of Bcl-2 or Bcl-xl or by treatment with Z-VAD, a caspase inhibitor, prevented loss of AR protein. In contrast, the calpain protease inhibitor, ALLN, accelerated the loss of AR protein expression. Additionally, cell-matrix adhesion changed the expression of coregulators of AR in the mRNA level of prostate cancer cells. Our results demonstrate that AR protein expression was reduced through activation of cell death pathways, and thus indirectly through cell suspension in BPH-AR cells. The activity of AR can also be regulated by adhesion in PC-3-AR and LNCaP cells through affecting the coregulators level.  相似文献   

3.
Stereotactic ablative body radiotherapy (SABR) is currently used as a salvage intervention for men with oligometastatic prostate cancer (PC), and increasingly so since the results of the Stereotactic Ablative Body Radiotherapy for the Comprehensive Treatment of Oligometastatic Cancers (SABR-COMET) trial reported a significant improvement in overall survival with SABR. The addition of androgen deprivation therapy (ADT) to localised prostate radiotherapy improves survival as it sensitises PC to radiotherapy-induced cell death. The importance of the androgen receptor (AR) gene pathway in the development of resistance to radiotherapy is well established. In this review paper, we will examine the data to determine how we can overcome the upregulation of the AR pathway and suggest a strategy for improving outcomes in men with oligometastatic hormone-sensitive PC.  相似文献   

4.
5.
6.
7.
8.
Prostate cancer is the most frequent malignancy in the worldwide male population; it is also one of the most common among all the leading cancer-related death causes. In the last two decades, the therapeutic scenario of metastatic castration-resistant prostate cancer has been enriched by the use of chemotherapy and androgen receptor signaling inhibitors (ARSI) and, more recently, by immunotherapy and poly(ADP–ribose) polymerase (PARP) inhibitors. At the same time, several trials have shown the survival benefits related to the administration of novel ARSIs among patients with non-castration-resistant metastatic disease along with nonmetastatic castration-resistant cancer too. Consequently, the therapeutic course of this malignancy has been radically expanded, ensuring survival benefits never seen before. Among the more recently emerging agents, the so-called “antibody–drug conjugates” (ADCs) are noteworthy because of their clinical practice changing outcomes obtained in the management of other malignancies (including breast cancer). The ADCs are novel compounds consisting of cytotoxic agents (also known as the payload) linked to specific antibodies able to recognize antigens expressed over cancer cells’ surfaces. As for prostate cancer, researchers are focusing on STEAP1, TROP2, PSMA, CD46 and B7-H3 as optimal antigens which may be targeted by ADCs. In this paper, we review the pivotal trials that have currently changed the therapeutic approach to prostate cancer, both in the nonmetastatic castration-resistant and metastatic settings. Therefore, we focus on recently published and ongoing trials designed to investigate the clinical activity of ADCs against prostate malignancy, characterizing these agents. Lastly, we briefly discuss some ADCs-related issues with corresponding strategies to overwhelm them, along with future perspectives for these promising novel compounds.  相似文献   

9.
Recent evidence suggests that the development of castration resistant prostate cancer (CRPCa) is commonly associated with an aberrant, ligand-independent activation of the androgen receptor (AR). A putative mechanism allowing prostate cancer (PCa) cells to grow under low levels of androgens, is the expression of constitutively active, C-terminally truncated AR lacking the AR-ligand binding domain (LBD). Due to the absence of a LBD, these receptors, termed ARΔLBD, are unable to respond to any form of anti-hormonal therapies. In this study we demonstrate that the multikinase inhibitor sorafenib inhibits AR as well as ARΔLBD-signalling in CRPCa cells. This inhibition was paralleled by proteasomal degradation of the AR- and ARΔLBD-molecules. In line with these observations, maximal antiproliferative effects of sorafenib were achieved in AR and ARΔLBD-positive PCa cells. The present findings warrant further investigations on sorafenib as an option for the treatment of advanced AR-positive PCa.  相似文献   

10.
Objective: Prostate cancer (PCa) is the most common malignant tumor diagnosed in men in developed countries. In developing countries, the PCa morbidity and mortality rates are also increasing rapidly. Since androgen receptor (AR) is a key driver and plays a critical role in the regulation of PCa development, AR-targeted agents provide a key component of current therapy regimens. However, even new-generation AR antagonists are prone to drug resistance, and there is currently no effective strategy for overcoming advanced PCa aggressiveness, including drug-resistance progression. The aim of this study was to evaluate the potential efficacy and novel therapy strategy of proxalutamide (a newly developed AR antagonist) in PCa. Methods: Four PCa cell lines with various biological heterogeneities were utilized in this study, namely, androgen-sensitive/-insensitive with/without AR expression. Proliferation, migration and apoptosis assays in PCa cells were used to evaluate the effective therapeutic activity of proxalutamide. The changes in lipid droplet accumulation and lipidomic profiles were analyzed to determine the influence of proxalutamide on lipogenesis in PCa cells. The molecular basis of the effects of proxalutamide on lipogenesis and the AR axis was then further investigated. Results: Proxalutamide significantly inhibited the proliferation and migration of PCa cells, and its inhibitory effect was superior to that of enzalutamide (Enz, second-generation AR antagonist). Proxalutamide induced the caspase-dependent apoptosis of PCa cells. Proxalutamide significantly diminished the level of lipid droplets in PCa cells, changed the lipid profile of PCa cells and reduced the content of most lipids (especially triglycerides) in PCa cells. Proxalutamide attenuated de novo lipogenesis by inhibiting the expression of ATP citrate lyase (ACL), acetyl CoA carboxylase (ACC), fatty acid synthase (FASN) and sterol regulatory element-binding protein-1 (SREBP-1). Moreover, proxalutamide also decreased AR expression in PCa cells, and its inhibitory effect on lipogenesis did not depend on its ability to down-regulate AR expression. However, Enz had no effect on AR expression, lipid accumulation or lipid de novo synthesis in PCa cells. Conclusions: By co-targeting the AR axis and endogenous adipogenesis, a novel and promising strategy was established for proxalutamide to combat the progress of PCa. The unique effect of proxalutamide on the metabolic reprogramming of PCa provides a potential solution to overcome the resistance of current AR-targeted therapy, which will help to effectively prolong its clinical service life.  相似文献   

11.
Calorie restriction (CR) inhibits prostate cancer progression, partially through modulation of the IGF axis. IGF-1 receptor (IGF-1R) blockade reduces prostate cancer xenograft growth. We hypothesized that combining calorie restriction with IGF-1R blockade would have an additive effect on prostate cancer growth. Severe combined immunodeficient mice were subcutaneously injected with 22Rv1 cells and randomized to: (1) Ad libitum feeding/intraperitoneal saline (Ad-lib); (2) Ad-lib/20 mg/kg twice weekly, intraperitoneal ganitumab [anti-IGF-1R antibody (Ad-lib/Ab)]; (3) 40% calorie restriction/intraperitoneal saline (CR); (4) CR/ intraperitoneal ganitumab, (CR/Ab). CR and ganitumab treatment were initiated one week after tumor injection. Euthanasia occurred 19 days post treatment. Results showed that CR alone decreased final tumor weight, plasma insulin and IGF-1 levels, and increased apoptosis. Ganitumab therapy alone reduced tumor growth but had no effect on final tumor weight. The combination therapy (CR/Ab) further decreased final tumor weight and proliferation, increased apoptosis in comparison to the Ad-lib group, and lowered plasma insulin levels relative to the Ad-lib and Ad-lib/Ab groups. Tumor AKT activation directly correlated with plasma IGF-1 levels. In conclusion, whereas ganitumab therapy modestly affected 22Rv1 tumor growth, combining IGF-1R blockade with calorie restriction resulted in a significant decrease in final tumor weight and improved metabolic profile.  相似文献   

12.
Knowledge on lymph node metastases is crucial for the prognosis and treatment of prostate cancer patients. Conventional anatomic imaging often fails to differentiate benign from metastatic lymph nodes. Pelvic lymph node dissection is an invasive technique and underestimates the extent of lymph node metastases. Therefore, there is a need for more accurate non-invasive diagnostic techniques. Molecular and functional imaging has been subject of research for the last decades, in this respect. Therefore, in this article the value of imaging techniques to detect lymph node metastases is reviewed. These techniques include scintigraphy, sentinel node imaging, positron emission tomography/computed tomography (PET/CT), diffusion weighted magnetic resonance imaging (DWI MRI) and magnetic resonance lymphography (MRL). Knowledge on pathway and size of lymph node metastases has increased with molecular and functional imaging. Furthermore, improved detection and localization of lymph node metastases will enable (focal) treatment of the positive nodes only.  相似文献   

13.
Traditional endocrine therapy for prostate cancer (PCa) has been directed at suppression of the androgen receptor (AR) signaling axis since Huggins et al. discovered that diethylstilbestrol (DES; an estrogen) produced chemical castration and PCa tumor regression. Androgen deprivation therapy (ADT) still remains the first-line PCa therapy. Insufficiency of ADT over time leads to castration-resistant PCa (CRPC) in which the AR axis is still active, despite castrate levels of circulating androgens. Despite the approval and use of multiple generations of competitive AR antagonists (antiandrogens), antiandrogen resistance emerges rapidly in CRPC due to several mechanisms, mostly converging in the AR axis. Recent evidence from multiple groups have defined noncompetitive or noncanonical direct binding sites on AR that can be targeted to inhibit the AR axis. This review discusses new developments in the PCa treatment paradigm that includes the next-generation molecules to noncanonical sites, proteolysis targeting chimera (PROTAC), or noncanonical N-terminal domain (NTD)-binding of selective AR degraders (SARDs). A few lead compounds targeting each of these novel noncanonical sites or with SARD activity are discussed. Many of these ligands are still in preclinical development, and a few early clinical leads have emerged, but successful late-stage clinical data are still lacking. The breadth and diversity of targets provide hope that optimized noncanonical inhibitors and/or SARDs will be able to overcome antiandrogen-resistant CRPC.  相似文献   

14.
Polyphenon E (Poly E) is a standardized, caffeine-free green tea extract with defined polyphenol content. Poly E is reported to confer chemoprotective activity against prostate cancer (PCa) progression in the TRAMP model of human PCa, and has shown limited activity against human PCa in human trials. The molecular mechanisms of the observed Poly E chemopreventive activity against PCa are not fully understood. We hypothesized that Poly E treatment of PCa cells induces gene expression changes, which could underpin the molecular mechanisms of the limited Poly E chemoprevention activity against PCa. PC-3 cells were cultured in complete growth media supplemented with varied Poly E concentrations for 24 h, then RNA was isolated for comparative DNA microarray (0 vs. 200 mg/L Poly E) and subsequent TaqMan qRT-PCR analyses. Microarray data for 54,613 genes were filtered for >2-fold expression level changes, with 8319 genes increased and 6176 genes decreased. Eight genes involved in key signaling or regulatory pathways were selected for qRT-PCR. Two genes increased expression significantly, MXD1 (13.98-fold; p = 0.0003) and RGS4 (21.98-fold; p = 0.0011), by qRT-PCR. MXD1 and RGS4 significantly increased gene expression in Poly E-treated PC-3 cells, and the MXD1 gene expression increases were Poly E dose-dependent.  相似文献   

15.
Prostate-specific membrane antigen (PSMA) is an essential molecular regulator of prostate cancer (PCa) progression coded by the FOLH1 gene. The PSMA protein has become an important factor in metastatic PCa diagnosis and radioligand therapy. However, low PSMA expression is suggested to be a resistance mechanism to PSMA-based imaging and therapy. Clinical studies revealed that androgen receptor (AR) inhibition increases PSMA expression. The mechanism has not yet been elucidated. Therefore, this study investigated the effect of activation and inhibition of androgen signaling on PSMA expression levels in vitro and compared these findings with PSMA levels in PCa patients receiving systemic therapy. To this end, LAPC4, LNCaP, and C4-2 PCa cells were treated with various concentrations of the synthetic androgen R1881 and antiandrogens. Changes in FOLH1 mRNA were determined using qPCR. Open access databases were used for ChIP-Seq and tissue expression analysis. Changes in PSMA protein were determined using western blot. For PSMA staining in patients’ specimens, immunohistochemistry (IHC) was performed. Results revealed that treatment with the synthetic androgen R1881 led to decreased FOLH1 mRNA and PSMA protein. This effect was partially reversed by antiandrogen treatment. However, AR ChIP-Seq analysis revealed no canonical AR binding sites in the regulatory elements of the FOLH1 gene. IHC analysis indicated that androgen deprivation only resulted in increased PSMA expression in patients with low PSMA levels. The data demonstrate that AR activation and inhibition affects PSMA protein levels via a possible non-canonical mechanism. Moreover, analysis of PCa tissue reveals that low PSMA expression rates may be mandatory to increase PSMA by androgen deprivation.  相似文献   

16.
Prostate cancer (PC) represents the most common cancer disease in men. Since high levels of androgens increase the risk of PC, androgen deprivation therapy is the primary treatment; however this leads to castration-resistant PC (CRPC) with a poor prognosis. The progression to CRPC involves ectopic androgen production in the adrenal glands and abnormal activation of androgen signaling due to mutations and/or amplification of the androgen receptor (AR) as well as activation of androgen-independent proliferative pathways. Recent studies have shown that adrenal-derived 11-oxygenated androgens (11-ketotestosterone and 11-ketodihydrotestosterone) with potencies equivalent to those of traditional androgens (testosterone and dihydrotestosterone) are biomarkers of CRPC. Additionally, dehydrogenase/reductase SDR family member 11 (DHRS11) has been reported to be a 17β-hydroxysteroid dehydrogenase that catalyzes the production of the 11-oxygenated and traditional androgens. This study was conducted to evaluate the pathophysiological roles of DHRS11 in PC using three LNCaP, C4-2 and 22Rv1 cell lines. DHRS11 silencing and inhibition resulted in suppression of the androgen-induced expression of AR downstream genes and decreases in the expression of nuclear AR and the proliferation marker Ki67, suggesting that DHRS11 is involved in androgen-dependent PC cell proliferation. We found that 5,7-dihydroxy-8-methyl-2-[2-(4-hydroxyphenyl)ethenyl]-4H-1-benzopyran-4-one (Kobochromone A, KC-A), an ingredient in the flowers of Carex kobomugi, is a novel potent DHRS11 inhibitor (IC50 = 0.35 μM). Additionally, KC-A itself decreased the AR expression in PC cells. Therefore, KC-A suppresses the androgen signaling in PC cells through both DHRS11 inhibition and AR downregulation. Furthermore, KC-A enhanced the anticancer activity of abiraterone, a CRPC drug, suggesting that it may be a potential candidate for the development of drugs for the prevention and treatment of CRPC.  相似文献   

17.
18.
MicroRNA (miRNA) acts as a critical regulator of growth in various human malignancies. However, the role of miRNA-3614 in the progression of human prostate cancer remains unknown. In this study, our results demonstrated that miRNA-3614-5p exerts a significant inhibitory effect on cell viability and colony formation and induces sub-G1 cell cycle arrest and apoptosis in human prostate cancer cells. Myeloid cell leukemia-1 (Mcl-1) acts as a master regulator of cell survival. Using the miRNA databases, miRNA-3614-5p was found to regulate Mcl-1 expression by targeting positions of the Mcl-1-3′ UTR. The reduction of Mcl-1 expression by miRNA-3614-5p was further confirmed using an immunoblotting assay. Pro-apoptotic caspase-3 and poly (ADP-ribose) polymerase (PARP) were significantly activated by miRNA-3614-5p to generate cleaved caspase-3 (active caspase-3) and cleaved PARP (active PARP), accompanied by the inhibited Mcl-1 expression. These findings were the first to demonstrate the anti-growth effects of miRNA-3614-5p through downregulating Mcl-1 expression in human prostate cancer cells.  相似文献   

19.
To evaluate the role of ubiquitin-conjugating enzyme E2C (UBE2C) in prostate cancer (PCa) progression and prognosis, the TCGA and our PCa tissue microarray cohort were included in the study. Weighted gene co-expression network analysis (WGCNA) and non-negative matrix factorization were used to cluster patients and to screen genes that play a vital role in PCa progression (hub gene). Immunohistochemistry staining was used to evaluate the protein level of UBE2C in prostatic tissues. Through WGCNA, we found a gene co-expression module (named the purple module) that is strongly associated with the Gleason score, pathologic T stage, and biochemical recurrent status. Genes in the purple module are enriched in cell cycle and P53 signaling and help us to cluster patients into two groups with distinctive biochemical recurrent survival rates and TP53 mutation statuses. Further analysis showed UBE2C served as a hub gene in the purple module. The expression of UBE2C in PCa was significantly higher than that in paracancerous tissues and was remarkably associated with pathologic grade, Gleason score, and prognosis in PCa patients. To conclude, UBE2C is a PCa-progress-related gene and a biomarker for PCa patients. Therapy targeting UBE2C may serve as a promising treatment of PCa in the future.  相似文献   

20.
Metastatic castration-resistant prostate cancer (mCRPC) is a progressive and incurable disease with poor prognosis for patients. Despite introduction of novel therapies, the mortality rate remains high. An attractive alternative for extension of the life of mCRPC patients is PSMA-based targeted radioimmunotherapy. In this paper, we extended our in vitro study of 223Ra-labeled and PSMA-targeted NaA nanozeolites [223RaA-silane-PEG-D2B] by undertaking comprehensive preclinical in vitro and in vivo research. The toxicity of the new compound was evaluated in LNCaP C4-2, DU-145, RWPE-1 and HPrEC prostate cells and in BALB/c mice. The tissue distribution of 133Ba- and 223Ra-labeled conjugates was studied at different time points after injection in BALB/c and LNCaP C4-2 tumor-bearing BALB/c Nude mice. No obvious symptoms of antibody-free and antibody-functionalized nanocarriers cytotoxicity and immunotoxicity was found, while exposure to 223Ra-labeled conjugates resulted in bone marrow fibrosis, decreased the number of WBC and platelets and elevated serum concentrations of ALT and AST enzymes. Biodistribution studies revealed high accumulation of 223Ra-labeled conjugates in the liver, lungs, spleen and bone tissue. Nontargeted and PSMA-targeted radioconjugates exhibited a similar, marginal uptake in tumour lesions. In conclusion, despite the fact that NaA nanozeolites are safe carriers, the intravenous administration of NaA nanozeolite-based radioconjugates is dubious due to its high accumulation in the lungs, liver, spleen and bones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号