首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The binary nano-CaCO3/polypropylene (PP), poly(ethylene terephthalate) (PET) fibers/PP and ternary nano-CaCO3/PET fibers/polypropylene composites were prepared by melt blending method, and their structure and mechanical properties were investigated. The results show that the ternary nano-CaCO3/PET fibers/PP composite displays significantly enhanced mechanical properties compared with the binary PET fibers/PP and nano-CaCO3/PP composites, and neat PP. The X-ray diffraction, dynamic mechanical analysis, scanning electron microscopy and analysis of the non-isothermal crystallization kinetics were used to investigate the reinforcement mechanism of composites. The results indicate that the interfacial action and compatibility between PET fiber and PP are obviously enhanced by the addition of modified nano-CaCO3 particles in the ternary composites and the mechanical property enhancement in the ternary system may be mainly originated from the formation of β-form crystallites of PP induced by the synergistic effect between PET fibers and nano-CaCO3.  相似文献   

2.
Graphene nanosheets (GNSs) reinforced poly(butylene succinate) (PBS) nanocomposites are facilely obtained by a solution-based processing method. Graphene nanosheets, which are derived from chemically reduced graphite oxide (GO), are characterized by AFM, TEM, XRD and Raman spectra. The state of dispersion of the GNSs in the PBS matrix is examined by SEM observations that reveals homogeneous distribution of GNSs in PBS matrix. A 21% increase in tensile strength and a 24% improvement of storage modulus are achieved by addition of 2.0 wt% of GNS. The electrical conductivity and thermal stability of the graphene-based nanocomposite are also improved. DSC measurement indicates that the presence of graphene sheets does not have a remarkable impact on the crystallinity of the nanocomposites. Therefore, the high performances of the nanocomposites are mainly attributed to the uniform dispersion of GNSs in the polymer matrix and strong interfacial interactions between both components.  相似文献   

3.
Poly(hexamethylene terephthalate) (PHT)/carbon nanotubes (CNT) nanocomposites containing 1% and 3% (w/w) of filler were prepared by two procedures: in situ ring-opening polymerization of hexamethylene terephthalate cyclic oligomers in the presence of CNT and melt blending of PHT/CNT mixtures. Arc discharge multiwalled carbon nanotubes, both pristine (MWCNT) and hydroxyl functionalized (MWCNT-OH), were used. The objective was to evaluate the effect of preparation procedure, nanotube side-wall functionalization and amount of nanotube loaded on properties of PHT. All nanocomposites showed an efficient distribution of the carbon nanotubes within the PHT matrix but interfacial adhesion and reinforcement effect was dependent on both functionalization and nanotubes loading. Significant differences in thermal stability and mechanical properties ascribable to functionalization and processing were observed among the prepared nanocomposites. All the prepared nanocomposites showed enhanced crystallizability due to CNT nucleating effects although changes in melting and glass transition temperatures were not significant.  相似文献   

4.
A small quantity of carbon nanotubes (CNTs) and graphene nanoplatelets (GNPs) were introduced into the poly(vinylidene fluoride) (PVDF)/GNP and PVDF/CNT composites, respectively, to prepare the corresponding ternary PVDF/CNT/GNP and PVDF/GNP/CNT composites. The results demonstrated that adding CNTs into the PVDF/GNP composites greatly promoted the formation of the hybrid network structure of fillers. This was much different from the scenario that adding GNPs into the PVDF/CNT composites. GNPs and CNTs exhibited excellent nucleation effects for the crystallization of PVDF matrix; however, the variation of the PVDF crystallinity was small. Adding CNTs into the PVDF/GNP composites greatly enhanced the electrical conductivity of the PVDF/CNT/GNP composites. This was also different from the scenario of the PVDF/GNP/CNT composites. Furthermore, the PVDF/CNT/GNP composites exhibit higher thermal conductivity and higher synergistic efficiency compared with the PVDF/GNP/CNT composites. The conductive mechanisms and the synergistic effects of the ternary composites were then analyzed.  相似文献   

5.
This research attempts to utilize polymer degradability in modifying electrical properties of poly(l-lactide) (PLLA)/poly(methyl methacrylate) (PMMA)/carbon fillers composites. Three kinds of carbon particles, i.e. carbon black, vapor-grown carbon fiber, and carbon nanotube, were compounded with PLLA/PMMA blend, followed by hydrolytic degradation of the composites, resulted in degradation of PLLA molecular chain from the surface of samples, with PMMA and carbon particles remained undegraded. By controlling degradation rate, it was possible to prepare samples with low surface resistivity, yet at the same time exhibited high value of volume resistivity. It was also found that final electrical properties of degraded composites depend on the size and the shape of the fillers.  相似文献   

6.
Thermoplastic starch (TPS) from industrial non-modified corn starch was obtained and reinforced with natural strands. The influence of the reinforcement on physical–chemical properties of the composites obtained by melt processing has been analyzed. For this purpose, composites reinforced with different amounts of either sisal or hemp strands have been prepared and evaluated in terms of crystallinity, water sorption, thermal and mechanical properties. The results showed that the incorporation of sisal or hemp strands caused an increase in the glass transition temperature (Tg) of the TPS as determined by DMTA. The reinforcement also increased the stiffness of the material, as reflected in both the storage modulus and the Young’s modulus. Intrinsic mechanical properties of the reinforcing fibers showed a lower effect on the final mechanical properties of the materials than their homogeneity and distribution within the matrix. Additionally, the addition of a natural latex plasticizer to the composite decreased the water absorption kinetics without affecting significantly the thermal and mechanical properties of the material.  相似文献   

7.
A nanocomposite with soluble high-performance poly(phthalazinone ether sulfone ketone) (PPESK) as matrix and multi-walled carbon nanotube buckypaper (MWCNT-BP) as reinforcement was fabricated by hot-press processing. The morphologies, dynamic and static mechanical behavior, thermal stability of the MWCNT-BP/PPESK composites were studied using scanning electron microscope (SEM), dynamic mechanical analyzer (DMA) and thermogravimetric analyzer (TGA). SEM microphotographs revealed a high impregnation degree of the MWCNT-BP/PPESK composites. Dynamic and static mechanical analysis revealed that the nanocomposites possessed high storage modulus, and good retention rate of mechanical strength even at 250 °C, which is mainly attributed to satisfied impregnation and strong interactions between MWCNT-BP and PPESK. Thermogravimetric analysis exhibited that the nanocomposites had excellent thermal stability. These investigations confirm that MWCNT-BP can be effectively used to manufacture high-loading CNT/PPESK composites with improved properties.  相似文献   

8.
Commercial Udel® poly(ether sulfone) (PSU) was filled with three different commercially available multiwalled carbon nanotubes (MWCNTs) by small scale melt mixing. The MWCNTs were as grown NC 7000 and two of its derivatives prepared by ball milling treatment. One of them was unmodified (NC 3150); the other was amino modified (NC 3152). The main difference beside the reactivity was the reduced aspect ratio of NC 3150 and NC 3152 caused by ball milling process. All PSU/MWCNT composites with similar filler content were prepared under fixed processing conditions and comparative analysis of their electrical and mechanical properties were performed and were correlated with their microstructure, characterized by optical microscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). A non-uniform MWCNT dispersion was observed in all composites. The MWCNTs were present in form of agglomerates in the size of 10–60 μm whereas the deagglomerated part was homogeneously distributed in the PSU matrix. The differences in the agglomeration states correlate with the variations of properties between different PSU/MWCNT composites. The lowest electrical percolation threshold of 0.25–0.5 wt.% was observed for the shortened non-functionalized MWCNT composites and the highest for amine-modified MWCNT composites (ca. 1.5 wt.%). The tensile behavior of the three composites was only slightly altered with CNT loading as compared to the pure PSU. However, the elongation at break showed a reduction with MWCNT loading and the reduction was least for composite with best MWCNT dispersion.  相似文献   

9.
Polylactide-based nanocomposites containing unmodified and organic modified sepiolite were prepared through a solution casting method. The structure and properties of materials were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and thermogravimetric analysis (TGA). From the results it can be concluded that the bundles of sepiolite have been dispersed into small aggregates containing several nanorods without destroying the crystal structure. Sepiolite nanofibers were well dispersed in the PLA matrix, exhibiting a randomly orientation with the contact among them in all cases. But the thermal stability of nanocomposites has been improved more by introducing unmodified sepiolite than that with organic modified sepiolite, which has also been confirmed by molecular dynamics simulation results that hydrophobic parts of organic modifiers could prevent the interaction between PLA molecules and sepiolite surface.  相似文献   

10.
The polymer composites composed of graphene foam (GF), graphene sheets (GSs) and pliable polydimethylsiloxane (PDMS) were fabricated and their thermal properties were investigated. Due to the unique interconnected structure of GF, the thermal conductivity of GF/PDMS composite reaches 0.56 W m−1 K−1, which is about 300% that of pure PDMS, and 20% higher than that of GS/PDMS composite with the same graphene loading of 0.7 wt%. Its coefficient of thermal expansion is (80–137) × 10−6/K within 25–150 °C, much lower than those of GS/PDMS composite and pure PDMS. In addition, it also shows superior thermal and dimensional stability. All above results demonstrate that the GF/PDMS composite is a good candidate for thermal interface materials, which could be applied in the thermal management of electronic devices, etc.  相似文献   

11.
This communication reported the substantial improvement in the mechanical and thermal properties of a polyurethane (PU) resulting from the incorporation of well-dispersed graphene oxide (GO). The stress transfer benefited from the covalent interface formed between the PU and GO. The Young’s modulus of the PU was improved by ∼7 times with the incorporation of 4 wt% GO, and the improvement of ∼50% in toughness was achieved at 1 wt% loading of GO without losing elasticity. Significant improvements were also demonstrated in the hardness and scratch resistance measured by nano-indentation. Thermogravimetric analysis revealed that the decomposition temperature was increased by ∼50 °C with the addition of 4 wt% GO.  相似文献   

12.
Polymeric composites with relatively high thermal conductivity, high dielectric permittivity, and a low dissipation factor are obtained in the present study. Three types of core-shell-structured aluminum (Al) particles are incorporated in poly(vinylidene fluoride) (PVDF) by melt-mixing and hot-pressing processes. The morphological, thermal, and dielectric properties of the composites are characterized using thermal analysis, a scanning electron microscope, and a dielectric analyzer. The results indicate that the Al particles decrease the degree of crystallinity of PVDF, and that the particle size and shape of the filler affect the thermal conductivity and dielectric properties of Al/PVDF. No variation in the dissipation factor is observed up to 60 wt.% Al. Thermal conductivity and dielectric permittivity values as high as 1.65 W/m K and 230, respectively, as well as a low dissipation factor of 0.25 at 0.1 Hz, are realized for the composites with 80 wt.% spherical Al.  相似文献   

13.
Transparent conductive composites can be achieved from PVDF–MWCNT at very low concentration of MWCNT. These composites show different degree of UV–Visible radiation absorption depending on MWCNT concentration in composites. The composition dependent dielectric properties and AC conductivity were also measured for these composites. Properties like AC conductivity, dielectric constant and loss are increasing with filler concentration. The variations of DC conductivity against composition and temperature are also reported. The electrical hysteresis and electrical set are observed for PVDF–MWCNT composites when subjected to heating–cooling cycle. The validity of different theoretical models depicting percolation threshold with respect to DC conductivity was tested for these composites.  相似文献   

14.
Ramie/PLA composites with the diisocyanates as compatibilizer were fabricated by extrusion and injection molding. The influence of different diisocyanates and various diisocyanate content on the mechanical properties and thermal properties of the composites was investigated. The presence of the diisocyanates in the composites lead to the improvements in mechanical properties and thermal properties of the composites. The morphologies of fracture surface using scanning electron microscopy (SEM) provided evidence of improved interfacial adhesion between ramie and PLA from the addition of the diisocyanates. The composites containing isophorone diisocyanate (IPDI) showed the best mechanical properties. The comparison of various IPDI content showed that the composites with 1.5% IPDI could get the optimum mechanical properties, and the excess diisocyanate content resulted in the decrease in the mechanical properties of the composites. However, IPDI content had almost no effect on the crystallization and melting behavior of the ramie/PLA composites.  相似文献   

15.
Polylactide-layered silicate nanocomposites with and without a chain extender were prepared by melt mixing using a twin-screw extruder. An organo-modified clay, Cloisite® 30B, and a chain extender Joncryl®-ADR 4368F were employed in this study. The effect of the chain extender and processing conditions on the properties of the PLA-clay nanocomposites were investigated for different strategies of mixing. The resulting nanocomposites were characterized by X-ray diffraction (XRD), while their morphology was observed by SEM and TEM. The incorporation of the chain extender could enhance the degree of clay dispersion provided that it is judiciously added to the nanocomposite. The corresponding results revealed that the Joncryl-based nanocomposites, where nanoclay platelets were well-dispersed, exhibited a significantly reduced permeability as compared to others. The mechanical properties of the neat PLA, the PLA and Joncryl-based nanocomposites were also examined. The increased molecular weight in Joncryl-based nanocomposites caused a significant increase in the modulus, drawability and toughness of the samples.  相似文献   

16.
The hybrids of multi-walled carbon nanotube and poly(lactic acid) (MWCNT/PLA) were prepared by a melt-blending method. In order to enhance the compatibility between the PLA and MWCNTs, the surface of the MWCNTs was covalently modified by Jeffamine® polyetheramines by functionalizing MWCNTs with carboxylic groups. Different molecular weights and hydrophilicity of the polyethermaines were grafted onto MWCNTs with the assistance of a dehydrating agent. The results showed that low-molecular-weight Jeffamine® polyetheramine modified MWCNTs can effectively improve the thermal properties of PLA composites. On the other hand, high-molecular-weight and poly(oxyethylene)-segmented polyetheramine could render the modified MWCNTs of well dispersion in PLA, and consequently affecting the improvements of mechanical properties and conductivity of composite materials. With the addition of 3.0 wt% MWCNTs, the increment of E′ of the composite at 40 °C was 79%. For conductivity, the surface resistivity decreased from 1.27 × 1012 Ω/sq for neat PLA to 8.30 × 10−3 Ω/sq for the composites.  相似文献   

17.
Conductive polymer composites (CPCs) that contain a segregated structure have attracted significant attentions because of their promising for fulfilling low filler contents with high electromagnetic interference (EMI) properties. In the present study, segregated poly(vinylidene fluoride) (PVDF)/multi-walled carbon nanotubes (MWCNTs) composites were successfully prepared by mechanical mixing and hot compaction. The PVDF/MWCNTs samples with 7 wt% filler content possess high electrical conductivities and high EMI shielding effectiveness (SE), reaching 0.06 S cm−1 and 30.89 dB (in the X-band frequency region), much higher than lots of reported results for CNT-based composites. And the EMI SE greatly increased across the frequency range as the sample thickness was improved from 0.6 to 3.0 mm. The EMI shielding mechanisms were also investigated and the results demonstrated absorption dominating shielding mechanism in this segregated material. This effective preparation method is simple, low-cost, and environmentally-friendly and has potential industrial applications in the future.  相似文献   

18.
Functionalized graphene nanosheets (f-GNSs) produced by chemically grafting organosilane were synthesized by a simple covalent functionalization with 3-aminopropyl triethoxysilane. The f-GNSs showed a larger thickness, but smaller width and than the un-treated graphene. The covalent functionalization of graphene with silane was favorable for their homogeneous dispersion in the polymer matrix even at a high nanofiller loading (1 wt.%). The initial thermal degradation temperature of epoxy composite was increased from 314 °C to 334 °C, at a f-GNS content of 1 wt.%. Meanwhile, the addition of 1 wt.% f-GNSs increased the tensile strength and elongation to failure of epoxy resins by 45% and 133%, respectively. This is believed to be attributed to the strong interfacial interactions between f-GNSs and the epoxy resins by covalent functionalization. The experimentally determined Young’s modulus corresponded well with theoretical simulation under the hypothesis that the graphene sheets randomly dispersed in the polymer matrix.  相似文献   

19.
Ethylene vinyl acetate (EVA)/polyaniline (Pani) composites were prepared by insitu polymerization technique. DC and AC conductivity of the composites have been investigated. Different theoretical models like Voet, Scarisbrick, Bueche, and McCullough have been applied to predict DC conductivity of the composite systems. Scarisbrick model exhibits somewhat similarity between experimentally observed and theoretically predicted conductivity. The limitations of the models as well as the deviations between the theoretically predicted and experimentally observed results have been discussed. A new model for conductivity has been proposed which fit well with the experimentally observed results.  相似文献   

20.
Polymer nanocomposites based on poly(ethylene terephthalate) (PET) with up to 40% polyamide 6 (PA6) reinforced with up to 7% of a fully dispersed organoclay were obtained in the melt state presenting a highly fibrillar morphology of the dispersed phase. The organoclay was located in the dispersed PA6 phase, as was expected given the nature of the chemical modification of the organoclay and the mixing procedure selected. Fibrillation was possible thanks to the presence of some PA6 in the PET-rich phase which assured compatibility and allowed the development of these high surface/volume ratio structures. The increases obtained in the elasticity modulus were higher than any previously observed in PET matrix Ncs. This indicated that the location of the organoclay in the dispersed fibrillated phase was more effective in terms of stiffening than a location in the matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号