首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
纳米/微米结构Al2O3-ZrO2复相陶瓷韧化力学   总被引:1,自引:0,他引:1  
通过对纳米/微米结构A12O3-ZrO2共晶复相陶瓷的Vickers压痕测试、SEM观察与XRD分析,发现该陶瓷裂纹属于中位裂纹系统,诱发该复相陶瓷中位裂纹扩展的压痕压制载荷临界值为30 kg,复相陶瓷的裂纹扩展主要受纳米/微米相晶内型结构所控制,纳米/微米相增韧机制决定着该陶瓷的韧化力学.  相似文献   

2.
通过对纳米组织Al2O3-ZrO2共晶复相陶瓷的Vickers压痕测试、SEM观察与XRD分析,发现诱发该复相陶瓷中位裂纹扩展的压痕压制载荷临界值为30kg,复相陶瓷的裂纹扩展主要受晶内型纳米相微观结构所控制,分布于纳米组织Al2O3-ZrO2共晶复相陶瓷中的ZrO2纳米相的结构、含量与分布及ZrO2纳米相与基体相之间的残余应力场决定着该复相陶瓷的断裂力学.  相似文献   

3.
通过对纳米组织Al2O3-ZrO2共晶复相陶瓷的Vickers压痕测试、SEM观察与XRD分析,发现诱发该复相陶瓷中位裂纹扩展的压痕压制载荷临界值为30kg,复相陶瓷的裂纹扩展主要受晶内型纳米相微观结构所控制,分布于纳米组织Al2O3-ZrO2共晶复相陶瓷中的ZrO2纳米相的结构、含量与分布及ZrO2纳米相与基体相之间的残余应力场决定着该复相陶瓷的断裂力学.  相似文献   

4.
研究了两种微米Al2O3与纳米ZrO2复合陶瓷的裂纹扩展过程与显微结构的关系.结果表明,Al2O3晶粒内部形成纳米级或亚微米级ZrO2颗粒,是复合陶瓷的断裂模式从沿晶断裂向穿晶断裂转化的主因.ZrO2含量较低有利于Al2O3晶界迁移包裹纳米ZrO2形成内晶结构;而ZrO2含量较高使主晶相长大受到抑止,不利于形成内晶结构,趋向于沿晶断裂.裂纹穿晶扩展需要的驱动力比沿晶断裂大,故裂纹扩展阻力曲线的上升趋势更加显著.裂纹穿晶扩展路径主要取决于内晶颗粒产生的弹性应力场的性质.  相似文献   

5.
20%纳米ZrO2(3Y)粉末加入到高纯亚微米Al2O3粉中,采用高压干压成型方法和恒速升温多阶段短保温烧结方法制备出不同烧结温度下的复相陶瓷。研究烧结温度对复相陶瓷力学性能的影响,通过XRD,EDS和SEM对复相陶瓷进行元素组成和微观结构分析。结果表明:烧结温度在很大程度上影响着复相陶瓷的力学性能和微观结构,常压烧结1600℃保温8h时,相对密度、维氏硬度和断裂韧性达到最大,分别为98.6%,18.54GPa和9.3MPa·m1/2,而基体晶粒尺寸为1.4~8.1μm,ZrO2相变量为34.6%。1600℃下复相陶瓷具有优质的微观结构,断裂方式为沿晶-穿晶混合断裂模式。ZrO2(3Y)粉体的加入,从相变增韧、内晶型颗粒增韧和裂纹偏转等多个方面提高了复相陶瓷的断裂韧性。  相似文献   

6.
ZrO2/SiC-WSi2/MoSi2纳米复相陶瓷制备及增韧机制探讨   总被引:4,自引:0,他引:4  
利用扫描电镜、图像分析仪以及X射线衍射仪研究了ZrO2/SiC-WSi2/MoSi2复合粉末的分散、热压试样结构、组织以及断口形貌和断裂韧性之间的相互关系.研究表明:综合利用球磨、酒精清洗、超声波振荡能很好地实现纳米/微米颗粒的分散,团聚现象较轻.SiC,Zro2纳米颗粒的协同复合化以及W的合金化能使复相陶瓷晶粒细化,增韧效果明显,断裂韧性可达8.13 MPa·m1/2,断口呈现出以沿晶为主、穿晶为辅的混合断裂特征.复相陶瓷的增韧主要是通过晶粒细化、裂纹偏转、微裂纹形成、桥联等机制的综合作用.  相似文献   

7.
利用大气等离子喷涂技术,在N80钢基体上制备纳米掺杂Al2O3/ZrO2热障涂层。利用XRD、SEM等观察分析了纳米掺杂Al2O3/ZrO2粉末及等离子喷涂涂层组织形貌及结构,结果表明,Al2O3/ZrO2等离子喷涂粉末是由纳米包覆微米级粒子及少量的纳米团聚体球团粒子构成。纳米掺杂等离子喷涂Al2O3/ZrO2涂层的微观组织形貌复杂,存在着纳米柱状晶薄壳内包裹着微米级柱状晶、未熔化的ZrO2陶瓷粒子嵌镶在晶体内部的独特晶内结构。涂层主要由α-Al2O3及亚稳四方相t,-ZrO2相构成。  相似文献   

8.
Al2O3/SiC纳米复相陶瓷材料的研究进展   总被引:2,自引:0,他引:2  
Al2O3/SiC纳米复相陶瓷由于具有优异的室温及高温机械性能而成为结构陶瓷领域研究的热点.本文就Al2O3/SiC纳米复相陶瓷的不同制备加工方式及增强增韧机理进行了详细的阐述.其中粉体的均匀混合是制备过程的关键因素,残余应力及裂纹偏转导致的穿晶断裂以及裂纹尖端SiC颗粒的桥联作用是复相陶瓷强度和韧性增加的主导因素.  相似文献   

9.
采用聚合物前驱体法成功制备出PZT/ZrO2纳米复相陶瓷。烧结过程中ZrO2相从固溶体中析出,制备出内晶型纳米复相陶瓷。对物相、组成和微观结构进行了分析和研究。随ZrO2的加入量增加断口从沿晶穿晶混合断裂变为穿晶断裂。  相似文献   

10.
在Al2O3颗粒补强锆英石陶瓷的研究基础上,探讨了Al2O3与ZrO2共同对锆英石陶瓷的协同补强增韧行为.制备的锆英石基复合材料的室温抗弯强度和断裂韧性分别可达383.31MPa、4.39 MPa·m12.采用XRD分析了复合材料的相组成,采用SEM观察复合材料的断面形貌.结果显示:ZrSiO4为主要晶相,另外还有少量Al2O3和ZrO2存在;第二种增强体ZrO2的最佳引入量为20%(质量分数);确定复合材料的强韧化是由Al2O3和ZrO2颗粒引起的裂纹偏转、微裂纹增韧与ZrO2颗粒引起的相变增韧共同作用而实现的,断裂方式主要为穿晶断裂.  相似文献   

11.
氧化锆层状复合陶瓷表面压应力与相变增韧的关系   总被引:2,自引:0,他引:2  
利用维氏硬度仪和X射线应力分析仪、X射线衍射仪等手段分别对单层和层状氧化锆陶瓷进行了力学性能测试和分析,研究结果表明,在ZrO2层状复合陶瓷中,压痕裂纹的形成除了因塑性区体积变化产生的残余应力外,还与相变应力和表面压应力有关,表面压应力对表面裂纹具有较大的抑制作用.层状陶瓷断裂韧性提高,主要是通过表面压应力对压痕裂纹区应力强度因子的贡献、提高断裂相变量,强化相变增韧效果、细化晶粒等几个方面来实现的.  相似文献   

12.
本文通过 XRD,SEM,TEM 以及三点弯曲试验技术研究了 Al_2O_3-25 v.-%ZrO_2(2mol%Y_2O_3)-25v.-% SiCw(AZS)三元陶瓷复合材料的断裂特点和韧化机理。结果表明,该材料的载荷-位移曲线因晶须的反复阻止作用呈锯齿状,ZrO_2与 SiC 晶须同时起增韧作用,材料的良好韧性是 ZrO_2的相变增韧、微裂纹增韧和裂纹偏转与分枝增韧以及 SiC 晶须的裂纹桥接与拔出效应共同作用的结果,但其综合效果不是简单叠加。本文还建立了 ZrO_2-SiC_W 的复合韧化模型,并进行了讨论。  相似文献   

13.
原位增强SiC陶瓷   总被引:5,自引:0,他引:5  
实验采用β-SiC为起始原料,Y2O3、A12O3为烧结助剂,通过适当的烧结控制,获得了具有长柱状晶粒结构的α-SiC陶瓷,材料以液相烧结机制密化,在烧结过程中发生了与柱状晶形成有关的SiC晶粒3C→4H相变.材料的力学性能与晶粒的形态即长径比存在一定的依从关系,并显示出原位增强的特性.在较佳工艺条件下,材料的强度和韧性最大值分别达到620MPa、6.1MPa.m1/2.压痕裂纹扩展的途径表明,裂纹偏转和晶粒桥联是主要的增韧机理,这得益于其弱的界面结合.  相似文献   

14.
A graded material of the (Al2O3–WC/Co)/TiC/Ni was prepared by using the self-propagating high-temperature synthesis-aided hot isostatic pressing process. The WC/Co particles were added to the outer Al2O3 layer in order to activate the heterophase toughening effects and control the thermal expansion mismatch between the outer and inner layers. SEM and TEM observations show a clustering structure of the WC/Co cermet in the Al2O3 matrix. The residual stress introduced by the compositionally graded structures was analysed using FEM calculation and X-ray diffraction. Measurements of the indentation toughness and R-curve behaviour indicated that the compressive surface stresses and WC/Co particles can significantly strengthen and toughen the Al2O3 ceramics. The indentation toughness of the (Al2O3–WC/Co)/TiC/Ni at the surface was 13.1 MPa m1/2, while those of the (Al2O3–WC/Co) uniform composite and the monolithic Al2O3 were 7.3 and 4.0 MPa m1/2, respectively. It was found by SEM observation of the crack propagation induced by indentation, thatthe crack deflection, bridging, blunting and arresting occurred at the WC/Co clusters. © 1998 Chapman & Hall  相似文献   

15.
Our research is concerned with nanoreinforced structural adhesive bonds (SAB) for aerospace applications that contain dissimilar substrates and a theromoset epoxy adhesive with dispersed nanofillers. The interactions between these different phases results in unique fracture properties and mechanisms that dictate the toughness of the nanocomposite. In view of the varied length-scale, one cannot implement mere traditional approaches to evaluate the possible toughening mechanisms needed to ensure the integrity of the multiphase nanocomposite. Our current research is devoted to establishing the appropriate toughening mechanisms in multiphase nanocomposites by adopting traditional mechanisms such as crack-bridging, crack deflection, crack pinning and void nucleation, as well as investigating new nano-mechanisms such as fracture ridge creation. In this paper, the toughening mechanisms of carbon nanotube (CNT) reinforced polymer SABs are identified and their effects quantified in order to effectively estimate the fracture toughness of nanocomposite. Specific attention is devoted to examining the effect of dispersion of the nanofillers upon the strengthening mechanisms and interfacial debonding in nanocomposites, and the propensity of agglomerations-assisted crack initiation sites using atomistic based continuum modeling techniques.  相似文献   

16.
通过在铝热剂中引入ZrO2(4Y)混合粉末,以超重力下燃烧合成方式,制备出Al2O3/ZrO2(4Y)自生复合陶瓷板材,并研究了复合陶瓷微观结构、生长机理与力学性能.XRD、SEM与EDS结果显示,Al2O3/32%ZrO2(4Y)复合陶瓷基体为亚微米t-ZrO2纤维成三角对称分布其上、取向各异的棒状共晶团,而Al2O3/37%ZrO2(4Y)复合陶瓷则以分布均匀的微米级t-ZrO2球晶为基体.Al2O3/32%ZrO2(4Y)复合陶瓷的强化归因于小尺寸共晶团边界及残余压应力增韧、相变增韧机制引发的高断裂韧性所致;同时,细小t-ZrO2球晶所具有的小尺寸缺陷及相变增韧与微裂纹增韧机制所引发的高断裂韧性也使Al2O3/37%ZrO2(4Y)复合陶瓷得以强化.  相似文献   

17.
The fracture toughness of a canasite glass-ceramic with a highly acicular, interlocked grain structure was measured by a number of different methods. The values at room temperature obtained by the chevron-notch, short-bar and notched-beam methods ranged from 4 to 5 M Pa m–1/2, well above literature values for other glass-ceramics. Similar values of toughness were obtained by the fracture of bars with indentation cracks introduced with loads ranging from 1.96 to 400 N, but only for crack sizes >200 m, with lower values for cracks of smaller size. The toughness values obtained by the direct measurement of the size of the indentation cracks were appreciably lower than the values obtained by all other methods over the total range of indentation loads and corresponding crack size. SEM fractography showed that the surface within the indentation cracks was appreciably smoother than the surrounding fracture surface. The high values of fracture toughness were attributed to the combined mechanisms of crack-deflection and microcrack-toughening due to the stress-enhanced creation of microcracks caused by the residual stresses which arise from the thermal expansion anisotropy of the canasite monoclonic crystal structure. The strong negative temperature dependence of the fracture toughness suggests that at room temperature microcrack toughening represents the primary contributing mechanism to the fracture toughness. The combined effects of crack-deflection and microcrack-toughening can lead to the development of glass-ceramics with greatly improved resistance to crack propagation.  相似文献   

18.
碳化硅(SiC)陶瓷具有优异的力学性能, 但是其断裂韧性相对较低。石墨烯的引入有望解决碳化硅陶瓷的断裂韧性较低的问题。本研究采用热压烧结工艺, 制备了具有不同还原-氧化石墨烯(rGO)掺入量的SiC复合材料。经过2050℃保温、40 MPa保压1 h后, 所制备的复合材料均烧结致密。对复合材料中rGO的掺入量、微观结构和力学性能的相互关系进行分析和讨论。加入4wt%的rGO后, 复合材料的三点抗弯强度达到564 MPa, 比热压SiC陶瓷提高了6%; 断裂韧性达到4.02 MPa•m1/2, 比热压SiC陶瓷提高了54%。加入6wt%的rGO后, 复合材料的三点抗弯强度达到420 MPa, 略低于热压SiC陶瓷, 但其断裂韧性达到4.56 MPa•m1/2, 比热压SiC陶瓷提高了75%。裂纹扩展微观结果显示, 主要增韧机理有裂纹偏转、裂纹桥连和rGO片的拔出。  相似文献   

19.
SiC-AIN solid-solution ceramics were prepared by pressureless sintering using Al2O3 and Y2O3 as the sintering additives. The resulting ceramics were subjected to annealing treatments over a range of temperatures from 1400 °C to 1800 °C in the spinodal region. The fracture toughness of the annealed ceramics was examined, by the indentation method, in relation to the annealing temperature and annealing time. X-ray diffraction profiles revealed that phase separation occurred during annealing. In ceramics containing 50 mol % SiC annealed at 1800 °C, the morphology of the phase separation is the characteristic modulated stratiform structure. Energy-dispersive X-ray spectroscopy (EDS) showed that the structure consisted of alternations of silicon-rich and aluminium-rich composition. The fracture toughness of the annealed ceramics increased compared to the as-sintered solid-solution ceramics. The phase separation is expected to contribute to the toughening of ceramics with nanometre-scale texture.  相似文献   

20.
Fracture toughness of Al2O3 platelet-reinforced hydroxyapatite (HAP) ceramics was investigated using the Vickers' indentation technique. The geometrical anisotropy of alumina platelets induces an anisotropic toughening. The efficiency of reinforcing mechanisms remains maximum for a crack propagating with an angular deviation inferior to 30° around the direction perpendicular to alumina disc faces. This is assumed to result from a crack deflection mechanism which induces a favorable contribution of mode II failure. A small effect of hydroxyapatite grain size becomes noticeable in the direction parallel to alumina disc faces. The toughening depends on the size and volume content of alumina platelets. Large size platelets provoke a spontaneous microcracking of the HAP matrix which is detrimental to the mechanical reliability, whereas small platelets lead to a strong toughening. The results relate to the intensity of thermoelastic residual stresses within the matrix around alumina inclusions. © 1999 Kluwer Academic Publishers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号