首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
Ni/ZnO吸附剂脱除催化裂化汽油中的硫   总被引:4,自引:1,他引:3  
 采用等体积浸渍法制备了Ni质量分数为4%的Ni/ZnO吸附剂,以FCC汽油为原料,通过固定床吸附实验评价了Ni/ZnO吸附剂对催化裂化汽油的吸附脱硫性能以及吸附剂的再生性能。结果表明,较高的反应温度、压力和较低的体积空速有利于提高Ni/ZnO对FCC汽油的吸附脱硫效果,并且汽油辛烷值损失小。Ni/ZnO吸附剂脱硫的适宜操作条件为: 温度370~380℃,吸附压力2.0MPa,氢/油摩尔比1.5,体积空速4.0h-1,此时吸附剂的穿透硫容 (硫质量分数达到30μg/g时,认为吸附剂穿透,测定吸附剂中的硫质量分数,即为吸附剂的穿透硫容。)为2.54%,汽油辛烷值损失1.1个单位。该吸附剂可以再生,多次循环使用后其脱硫性能基本保持不变。  相似文献   

2.
介绍了国内某炼化公司采用美国CDTECH公司催化蒸馏加氢(CDHydro/CDHDS)技术处理催化裂化(FCC)汽油的情况。CDHydro/CDHDS技术将加氢脱硫反应与催化蒸馏技术组合在1座塔器中进行。装置运行结果表明,在实现FCC汽油良好脱硫的同时还能使汽油的辛烷值保持较高数值;处理后可将轻、重汽油中硫的质量分数分别降低至5.4×10-6,38.0×10-6,将重汽油中烯烃的体积分数降低至33%。  相似文献   

3.
催化裂化汽油吸附脱硫反应工艺条件的探讨   总被引:1,自引:0,他引:1  
中国石油化工股份有限公司北京燕山分公司炼油二厂采用美国Conoco Phillips公司的汽油吸附脱硫技术(S-Zorb),对FCC全馏分汽油进行脱硫处理,以满足日益严格的排放标准。通过对各工艺参数的考察,得出适宜的工艺条件为:反应温度425~435℃,氢油比0.31~0.34,待生吸附剂载硫量9%~10%,再生吸附剂载硫量5%~6%。实际工业应用表明,在合适的工艺条件下,FCC全馏分汽油的脱硫率可达97%以上,产品硫质量分数可降至10μg/g以下,而道路辛烷值损失小于0.5。  相似文献   

4.
催化裂化汽油络合萃取深度脱硫实验研究   总被引:1,自引:0,他引:1  
采用自制络合萃取剂TS-1对中国石油四川石化公司南充炼油厂催化裂化(FCC)重汽油和全馏分汽油进行脱硫,考察了萃取温度、萃取时间、相分离时间、萃取剂用量[m(萃取剂)/m(汽油)]等工艺条件对脱硫效果的影响,还研究了萃取剂对类型硫的选择性和萃取剂的脱硫效果。结果表明:最佳萃取温度为30℃,最佳萃取时间为7 min,最佳相分离时间为15 min;在最佳工艺条件下对硫质量分数为202×10-6的FCC重汽油脱硫,萃取剂用量为0.003,0.019时精制汽油的硫质量分数分别为138×10-6,49×10-6,汽油收率分别为99.6%,99.5%;萃取剂对FCC重汽油和FCC全馏分汽油中硫醇硫的脱除率均为100.0%,对二硫化物硫的脱除率分别为66.7%和80.0%,对硫醚硫的脱除率分别为85.7%和87.5%,对噻吩硫的脱除率分别为42.1%和32.0%。  相似文献   

5.
康菲公司吸附法汽油脱硫技术加快推广应用康菲大陆菲利浦斯石油公司S Zorb吸附法(S Zorb SRT)汽油脱硫工艺与加氢处理不同,它选择性地去除硫化物而不是转化硫化物。可将高硫FCC汽油转化为低硫汽油。该工艺将FCC汽油与少量氢气混合并加热,蒸发的汽油进入膨胀的流化床反应器,吸附剂将进料中的硫吸附除去。吸附剂从反应器中连续抽出送至丙生器用氧化方法再生,再用纯度低达50%的氢气还原,硫以SO2除去,送至硫回收装置。再生的吸附剂返回反应器。汽油辛烷值损失在1个单位以下。S Zorb工艺操作条件为:343~413℃、0·69~2·07 MPa、空速4~10…  相似文献   

6.
为了研究S Zorb吸附剂中Zn2SiO4对汽油辛烷值及吸附剂脱硫能力的影响,从S Zorb装置上采集了3个具有不同Zn2SiO4质量分数的吸附剂,以FCC汽油为原料,采用固定床评价装置进行了脱硫实验。系统研究了吸附剂的物相组成和表面Ni元素化学态的变化对汽油硫质量分数、脱硫前后辛烷值损失(ΔRON)和烃组成的影响规律。结果表明,随着吸附剂中Zn2SiO4物相质量分数的增加,其脱硫能力明显降低,同时吸附剂外表面n(NiS)/n(Total Ni)也随之增加。在相同的反应条件下,吸附剂外表面n(NiS)/n(Total Ni)增加会导致吸附剂对FCC汽油中烯烃的吸附能力减弱,降低了烯烃加氢饱和的机会,使得FCC汽油脱硫前后的ΔRON减小。C4~C6烯烃加氢饱和生成链烷烃是导致FCC汽油辛烷值损失的主要原因。  相似文献   

7.
为了研究S Zorb吸附剂中Zn_2SiO_4对汽油辛烷值及吸附剂脱硫能力的影响,从S Zorb装置上采集了3个具有不同Zn_2SiO_4质量分数的吸附剂,以FCC汽油为原料,采用固定床评价装置进行了脱硫实验。系统研究了吸附剂的物相组成和表面Ni元素化学态的变化对汽油硫质量分数、脱硫前后辛烷值损失(ΔRON)和烃组成的影响规律。结果表明,随着吸附剂中Zn_2SiO_4物相质量分数的增加,其脱硫能力明显降低,同时吸附剂外表面n(NiS)/n(Total Ni)也随之增加。在相同的反应条件下,吸附剂外表面n(NiS)/n(Total Ni)增加会导致吸附剂对FCC汽油中烯烃的吸附能力减弱,降低了烯烃加氢饱和的机会,使得FCC汽油脱硫前后的ΔRON减小。C_4~C_6烯烃加氢饱和生成链烷烃是导致FCC汽油辛烷值损失的主要原因。  相似文献   

8.
为研究催化裂化汽油低温吸附脱硫工艺,在实验室合成了一种多孔性复合吸附剂RAL-10,采用催化裂化汽油为原料进行了低温液相吸附脱硫实验,结果显示:RAL-10吸附剂的静态吸附硫容较一般吸附剂高,可达4.06μg/g;RAL-10吸附剂对汽油中的各类硫化物具有较好的吸附活性,并对大分子硫化物具有较高的吸附选择性;RAL-10新鲜吸附剂的动态起始吸附脱硫率能够达到100%;RAL-10吸附剂再生后的动态吸附脱硫活性与新鲜吸附剂相近,起始吸附脱硫率能够达到98%以上,动态起始吸附后的油品硫质量分数小于20μg/g。  相似文献   

9.
采用萃取蒸馏法对FCC轻汽油进行脱硫实验,对脱硫溶剂和脱硫工艺条件进行评选。结果表明:最佳脱硫溶剂为TSJ,在蒸馏级数为2、剂油体积比为0.4、FCC轻汽油进料空速为1.5 h-1的条件下,FCC轻汽油A的硫质量分数从114 μg/g降至48.2 μg/g,脱硫率为57.72%, 收率为99.20%,达到国Ⅳ排放标准(汽油硫质量分数不大于50 μg/g);用N2对TSJ富液再生、脱硫循环5次后,FCC轻汽油A的脱硫率基本保持不变。TSJ对原料的适应性良好,对多种FCC轻汽油进行萃取蒸馏脱硫实验,都可得到较高的脱硫率和收率。  相似文献   

10.
采用微库仑技术和色谱-硫化学发光检测(SCD)偶联技术系统考察了以微孔和介孔分子筛为载体的多种吸附剂对FCC汽油和HDS汽油的选择性吸附脱硫性能,探讨了汽油选择性吸附脱硫过程中硫化物的脱除规律。结果表明:CeY对FCC汽油及HDS汽油均表现出较好的脱硫效果;NaY、NiY等微孔分子筛吸附剂及SBA-15,MCM-41,AlSBA-15,CuO-SBA-15等介孔分子筛吸附剂对FCC汽油及HDS汽油中的噻吩尤其是对小分子烷基取代噻吩类硫化物的吸附选择性较差;对同一种吸附剂,汽油中硫化物的组成对其选择性吸附脱硫效果有较大的影响。  相似文献   

11.
中国石化安庆分公司以3套催化裂化装置产汽油(以下简称催Ⅰ~催Ⅲ)为主要原料,采用吸附脱硫(S-Zorb)技术和在线优化调和技术进行成品汽油生产。结果表明,以S-Zorb汽油(催Ⅰ~催Ⅲ汽油经S-Zorb脱硫后汽油)为主调和油,同时加入拔头油、重整汽油和抽余油,四组分调和的汽油含硫量低于10×10-6,可以达到国Ⅴ标准(含硫量小于10×10-6),然而生产成本高。将重整汽油、抽余油、S-Zorb汽油1(催Ⅰ和催Ⅲ汽油经S-Zorb脱硫后汽油)、拔头油和催化Ⅱ汽油进行调和,其中后者直接进入调和装置,五组分调和的成品汽油含硫量较四组分高,但仍低于国Ⅳ标准,且生产成本相对较低。  相似文献   

12.
在中国石油锦西石化公司150kt/a聚丙烯装置上,选用JX-6B型氧化铝COS水解催化剂(以下简称COS水解剂)及JX-4D型低温氧化锌脱硫剂(以下简称低温脱硫剂),对原料丙烯进行脱硫精制。工业应用表明,当丙烯进料量约为19.0t/h时,丙烯COS和总硫平均质量分数分别由脱硫前的3.26×10^-6,6.38×10^-6降至脱硫后的低于0.020×10^-6,0.30×10^-6。当装置运行34个月后,低温脱硫剂的实际硫容质量分数为12.25%。在工业生产中,丙烯聚合主催化剂活性高于40kg/g。聚丙烯产品(牌号为1120k)性能达到Q/sYjx0324-2011标准要求。  相似文献   

13.
在中型提升管催化裂化装置中,以含硫质量分数为0.610%的减压渣油与减压蜡油混合物(二者质量比为3∶7)为原料,LDO-70 S为催化剂,在反应温度500℃,反应时间为2 s的条件下,可制备含硫质量分数为0.027%的催化裂化汽油。结果表明,随着原料含硫质量分数的提高,汽油含硫质量分数提高,其中后者是前者的8%~9%。随着反应温度的升高,干气、液化气和焦炭质量分数增加,汽油、柴油、重油和汽油含硫质量分数降低。随着催化剂/原料油(质量比)的增加,干气、液化气、焦炭和汽油中含硫质量分数提高,汽油、柴油和重油质量分数降低。  相似文献   

14.
以氧气为氧化剂,硼酸为催化剂,活性白土为吸附剂,将催化氧化与吸附相结合,对催化裂化汽油进行了氧化吸附脱硫研究。结果表明,在氧气压力为2.0 MPa,氧化温度为80℃,氧化时间为60 min,催化剂用量占原料汽油的质量分数为3%,原料汽油与吸附剂质量比为20的优化条件下,汽油中的硫含量可从571.00μg/g降至68.52μg/g,脱硫率为88.00%,汽油的收率为83.4%。  相似文献   

15.
以催化裂化副产C4和乙烯裂解C4为原料生产1-丁烯的方法   总被引:1,自引:0,他引:1  
为能与乙烯裂解副产碳四(C4)直接混合作为生产1-丁烯的原料,在现有处理工艺的基础为催化裂化副产C4增加了轻C4再分离和深度脱硫工序。分离出异丁烷后,催化裂化副产轻C4中异丁烯的质量分数将不小于33%。深度脱硫、净化、浓缩并选择性加氢后,催化裂化副产轻C4中硫的质量分数将小于1×10^-6,T-烯的质量分数将不大于10×10^-6,可直接与乙烯裂解副产C4丁二烯抽余油混合,在甲基叔丁基醚装置中发生醚化反应后精馏,可生产出聚合级1-丁烯产品。  相似文献   

16.
流化催化裂化汽油吸附法深度脱硫工艺的研究   总被引:3,自引:5,他引:3  
以臭氧氧化活性炭为吸附剂,对流化催化裂化(FCC)汽油进行吸附脱硫研究,探索了最佳吸附条件和最佳再生条件。实验结果表明,在活性炭颗粒大小为80~100目、吸附温度为80℃、原料液态空速为1.70h-1的最佳吸附条件下,可使初始硫含量为796μg/g的FCC汽油的初始流出液的硫含量降到18μg/g,初始脱硫率达97.7%;在脱附剂为乙醇、再生温度为60℃、脱附剂液态空速为1.70h-1的最佳再生条件下再生活性炭,循环使用3次时仍可使初始流出液的硫含量降到45μg/g,初始脱硫率达94.3%。  相似文献   

17.
研究了工艺条件对焦化柴油氧化萃取脱硫脱氮效果的影响。结果表明,氧化体系选用双氧水溶液(H2O2质量分数为30%)和甲酸,以磷钨酸为催化剂,以糠醛为萃取剂,在氧化温度为70℃,恒温回流搅拌时间为60 min,V(氧化体系)/V(焦化柴油)为0.4,V(甲酸)/V(双氧水溶液)为0.5,磷钨酸用量为0.20 g/L,采用二级萃取的优化工艺条件下,可将焦化柴油中硫的质量分数由817.563×10-6降至45.613×10-6,氮质量分数由734.577×10-6降至13.620×10-6。  相似文献   

18.
介绍了中国石油乌鲁木齐石化公司60万t/a催化裂化(FCC)汽油加氢改质工业试验装置的设计思路及运行情况。结果表明,先将FCC汽油分割为轻、重2种馏分,然后使用DSO及M催化剂对重馏分进行二段加氢,再与碱洗脱硫醇的轻馏分调和,使FCC汽油的质量获得升级,可获得含硫质量分数小于50×10-6,硫醇质量分数小于10×10-6的精制汽油;处理后汽油的研究法辛烷值损失小于0.7;装置的液体收率不小于99.0%;装置的设计综合能耗为1 036.36 MJ/t,实际运行时综合能耗为901.2 MJ/t。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号