首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
通过田问试验,研究了地下滴灌施加氟乐灵对滴头根系入侵堵塞的控制效应及其对冬小麦产量、品质和根系分布的影响.试验选取施药日期和施药浓度2因素.施药日期取返青末期和抽穗初期2个水平,施药浓度取0,50,75mg/1和150mg/1共4个水平.冬小麦收获后,采用土钻法在滴头附近沿垂直方向分层取样,测定各土层的根长密度和氟乐灵含量,并统计各小区的产量.同时,在每个小区内随机抽取25个滴头,观测滴头流道内是否有根系残留.从而判断滴头是否发生根系入侵堵塞.试验结果表明,施药可以有效地削减滴头附近区域的根密度,从而减小根系入侵堵塞的发生.在对照小区内(0mg/1)抽取的25个滴头中有4个出现了根系堵塞现象(堵塞率16%),而在施药的各个处理中均未发现根系堵塞的滴头(堵塞率0).施药浓度对根系分布及作物的产量、品质均无显著影响.而施药日期对冬小麦根系的垂直分布影响较为显著,晚期施药导致滴头埋设深度处小范围内(15~30cm深度)的根系有所减少,而早期施药则使滴头下方较大区域内(15~40cm深度)的根长密度显著减小.  相似文献   

2.
通过2年日光温室滴灌施肥灌溉试验,探讨毛管埋深和土壤层状质地对根区土壤水分、NO3(-)-N和番茄根系分布的影响,为地下滴灌的设计和运行提供依据.毛管埋深取0、15和30cm三个水平,设置0、150和225kgN/hm(2)三个施氮量水平,3种土壤包括均质壤土(L)、上砂下壤土壤(SL)和壤土中有砂土夹层土壤(LSL).研究结果表明,番茄生育期内根区平均土壤含水率和根长密度在0~20cm土层中随毛管埋深的增加而降低,在20~70em土层中随毛管埋深的增加而增大.地下滴灌土壤NO3(-)-N含量在0~20cm土层中较地表滴灌有所增加.毛管埋深对番茄总根长密度影响不显著,而最大根长密度随毛管埋深增加而降低,且出现的土层变深.层状土壤质地对土壤水分、NO3(-)-N和番茄根系在土壤剖面上的分布影响较大,与均质壤土处理相比,LSL处理0~20cm土层土壤含水率降低18%,NO3(-)-N含量降低23%.根长密度增加44%,土壤剖面上总根长密度与均质壤土处理相当;SL处理0~20cm土层土壤含水率降低28%,NO3(-)-N含量降低55%,根长密度降低35%,土壤剖面上总根长密度较均质壤土处理降低37%,因此在上粗下细层状土壤中应慎用地下滴灌.  相似文献   

3.
通过2年日光温室滴灌施肥灌溉试验,探讨毛管埋深和土壤层状质地对根区土壤水分、NO-3N和番茄根系分布的影响,为地下滴灌的设计和运行提供依据。毛管埋深取0、15和30cm三个水平,设置0、150和 225kgN/hm\+2三个施氮量水平,3种土壤包括均质壤土(L)、上砂下壤土壤(SL)和壤土中有砂土夹层土壤 (LSL)。研究结果表明,番茄生育期内根区平均土壤含水率和根长密度在0~20cm土层中随毛管埋深的增加而降低,在20~70cm土层中随毛管埋深的增加而增大。地下滴灌土壤NO-3N含量在0~20cm土层中较地表滴灌有所增加。毛管埋深番茄总根长密度影响不显著,而最大根长密度随毛管埋深增加而降低,且出现的土层变深。层状土壤质地对土壤水分、NO-3N和番茄根系在土壤剖面上的分布影响较大,与均质壤土处理相比,LSL处理 0~20cm土层土壤含水率降低18%,NO-3N含量降低23%,根长密度增加44%,土壤剖面上总根长密度与均质壤土处理相当;SL处理0~20cm土层土壤含水率降低28%,NO-3N含量降低55%,根长密度降低35%,土壤剖面上总根长密度较均质壤土处理降低37%,因此在上粗下细层状土壤中应慎用地下滴灌。  相似文献   

4.
干旱区滴灌核桃树根系空间分布特性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
为了研究核桃树根系空间分布特性,本文使用分层分段挖掘法对干旱区滴灌方式下核桃树根系总根长、根重、有效吸收根根长的空间分布规律进行了研究。研究表明:核桃树根系总根长水平方向主要分布在0~120cm处,占其总分布的90.84%;垂直方向主要分布在0~90cm处,占其总分布的78.75%。根重水平方向主要分布在0~30cm处,占其总分布的52.49%;垂直方向主要分布在15~75em处,占其总分布的61.12%。有效吸水根根长在水平距离60cm和垂直深度60cm处为分布密集区。在距离树干水平距离60cm和垂直深度60cm附近的根区,应作为核桃树水肥管理的重点区域。  相似文献   

5.
日光温室番茄滴灌灌溉制度试验研究   总被引:4,自引:0,他引:4  
针对日光温室番茄膜下滴灌,选择灌水量、灌水周期、灌水次数作为试验因素,开展完全组合的滴灌灌溉制度试验研究。日光温室春茬番茄全生育期共持续130~135d,适宜的膜下滴灌灌水次数为29次,平均灌水周期为4~5d,平均次灌水量210m3/hm2,适宜的灌溉定额为6150m3/hm2,产量15.3×104~16.05×104kg/hm2。  相似文献   

6.
为了从机理上揭示土壤水分对玉米生长及产量的影响,文中采用了室内盆栽的形式,在玉米三叶期后开始控制灌溉的含水量下限,对其进行不同水分处理。试验对玉米的根长密度、总根长、根系干重、产量构成因子、产量及灌溉水利用系数进行了系统的分析。结果表明:不同水分处理不改变玉米根系随土层增加所呈现的对数递减的分布形式,却改变了其在不同土层的分配比例;水分处理W1玉米总根长及根系干重均大于W2,但差别不显著;W3玉米总根长及根系干重较W1、W2均显著减小;相对于其他处理,W1水分充足,其玉米产量最高,穗粒数最多,且玉米籽粒最饱满;W2较W1玉米产量、穗粒数及百粒重均有所降低,但降低的程度不显著;W3和W4玉米均严重减产,且籽粒干瘪不饱满。各水分处理灌溉水分利用效率排序为W2>W1>W3>W4。综合考虑玉米生长指标及灌溉水利用效率,确定在玉米生育期内以田间持水量的70%作为灌溉下限较为合理。  相似文献   

7.
为了探明灌溉方式对作物根系和水分利用效率的影响,通过2年的温室大棚试验,研究了沟灌、滴管和无压灌溉不同方式对番茄根系特性、产量、耗水量和水分利用效率的影响。结果表明:无压灌溉和滴灌根系密度分布在出水口附近3.0 cm~22.5 cm。根系密度、根长和根系水阻力系数R表现规律为无压灌溉最大,滴灌次之,沟灌最小,而根系水力传导系数恰恰相反。番茄干物质则表现为沟灌>滴灌>无压灌溉。无压灌溉与沟灌和滴灌相比,降低了耗水量,提高了产量,明显地提高了水分利用效率。研究成果为无压灌溉在温室中的利用提供了依据。更多还原  相似文献   

8.
干旱区不同灌溉方式下枣树根系分布特性研究   总被引:1,自引:1,他引:0       下载免费PDF全文
采用土钻取样和扫描分析法,对干旱区两年的滴灌和沟灌两种灌溉方式下的枣树根系分布进行了调查研究。结果表明:滴灌处理的总根长、吸收根根长、根尖数、分叉数以及根表面积和体积分别比沟灌提高了15.4%、13.9%、24.8%、39.7%、29.9%和47%,说明滴灌使根系增多,从而提高了枣树根系吸收水分和养分的能力。并用指数函数建立了枣树有效根长密度分布的二维模型,为干旱区枣树的滴灌技术改进提供依据。  相似文献   

9.
番茄膜下滴灌技术是在地膜覆盖的基础上发展起来的辅助有自动灌溉设施的一项新型技术。本试验通过番茄膜下滴灌与大田灌溉对照相比较,探讨番茄膜下滴灌节水、增产效果,具有较大的生产实践意义。  相似文献   

10.
通过试验,分析了简易地下滴灌在不同孔径、不同供水压力及是否带有防堵套条件下的滴孔出流特性,得出了孔径越大,滴孔出流量越大;且滴孔出流量随供水压力的增大而增大;在同一供水压力条件下,自然滴孔与带防堵套加垫滴孔出流量接近相等。最后建立了流量公式,经验证较能接近实测值。  相似文献   

11.
以探寻合理的滴头埋深与流量为目的,开展浅埋式滴灌下土壤水分分布规律的试验研究。试验土箱净尺寸为30cm×30cm×60cm(长×宽×高),供试土壤取自新疆青河县阿苇灌区试验站。试验设置5、10、15 cm 3个滴头埋深,各埋深条件下设置不同流量的处理。结果表明:不同滴头埋深的情况下均存在土体破坏的临界流量,滴头埋深越大临界流量也越大,滴头埋深为5、10和15 cm对应的临界流量分别为1.0、1.7和2.5 L/h;随着流量的增大,滴头埋深过浅时,水量向湿润体上部聚集,当埋深超过一定深度时,水量向湿润体下部聚集;在临界流量情况下,湿润锋前60 min运移速率较快,随着滴头埋深的增大,灌水结束后湿润体的垂向湿润长度越长,土壤平均含水率值越小;滴头埋深为10 cm、流量1.7 L/h时,湿润体水分分布较为合理。  相似文献   

12.
本文通过室内试验,分析了不同灌水频率对地下滴灌线源入渗土壤水分运动规律的影响,认为在相同灌水量条件下,间隔时间越长,土壤水分含量在湿润体内的分布梯度差相对较小,而间隔时间越短,在滴头附近含水率越高,向周围递减的梯度越大。分3次完成灌水量且两次间隔时间12h的试验,在滴头周围含水率较高。  相似文献   

13.
地下滴灌灌水器堵塞特性田间评估   总被引:7,自引:2,他引:7  
以运行2年的日光温室番茄地下滴灌系统为对象,通过对灌水器流量进行测试,分析了滴灌带埋深、施肥次数、施肥量和土壤层状结构等对灌水器堵塞程度及灌水均匀性的影响.滴灌系统包括滴灌带埋深为0、15和30cm的33个小区,2年累计施肥次数的变化范围为0~19,累计施尿素量变化范围为0~1 023kg/hm2.结果表明,运行2年后地表和地下滴灌灌水器发生了轻微堵塞,其中流量降低超过25%的灌水器占2.7%,完全堵塞的灌水器占2.1%;施肥次数、施肥量和土壤层状结构对堵塞的发生没有明显影响,地表滴灌比地下滴灌堵塞略为严重;未发现根系入侵造成的灌水器堵塞.对发生堵塞灌水器在系统中的位置进行调查后发现,大部分堵塞灌水器位于毛管的最末端.为了定量评价灌水器堵塞程度对灌水均匀性的影响,建立了灌水器流量变差系数与流量降低百分数之间的回归关系,结果表明灌水器流量均匀系数随堵塞引起的流量降低百分数的增大而线性增大.  相似文献   

14.
地下滴灌条件下水热运移数学模型与验证   总被引:4,自引:0,他引:4  
基于土壤水、热运动基本方程,结合地下滴灌水分运动特点,建立了地下滴灌水热运移数学模型。利用HYDRUS-2D软件对模型进行了求解,并用田间实测数据进行验证。模拟和验证结果表明,模型对地下滴灌条件下的土壤水分和土壤温度运移变化动态的模拟效果较好,该水热运移数学模型可以用来监测和调控作物生长所需的土壤水、热环境条件。模拟值和实测值的结果对比表明,上层土壤的水分和温度的模拟值较下层土壤值差异较明显,且数值波动大,主要原因是上层土壤易受到土壤蒸发和大气温度剧烈波动的影响。  相似文献   

15.
地下滴灌毛管适宜埋深及间距研究进展   总被引:5,自引:0,他引:5  
随着全球水资源的日益短缺,节水灌溉越来越引起人们的重视。地下滴灌是一种节水效率很高的节水灌溉技术,具有诸多优点。本文分析了地下滴灌毛管埋深和间距对作物生长和发育的影响,重点介绍了国内外地下滴灌毛管埋深和间距的研究进展及应用现状,对其发展历史、经济与环境效益、毛管埋深、毛管间距、作物的生长和发育及系统的投资等方面进行了综述,并对毛管埋深5 cm、15 cm和35 cm进行了土壤水分运移试验分析,以便为地下滴灌系统的合理设计提供理论依据。  相似文献   

16.
基于田间定位观测的地下滴灌毛管性能评价   总被引:3,自引:0,他引:3  
用定量计时法对使用1~7年的SDI毛管的压力和流量进行了定位观测,研究了毛管水力性能的年内和年际变化规律。结果表明,在同一使用年限(灌水季节)内,随着灌水次数的增加和灌水时间的延长,毛管的流量降低率增加。毛管的性能变化与其所在的位置有关,靠近小区进口(支管首部)处毛管的流量降低率较小,随着距小区进口距离的增加,毛管流量降低率增大。毛管的流量降低率随使用年限的增加而增大。对设计使用寿命为3年的SDI毛管,使用3~4年时,毛管的流量降低率均未超过20%;使用6年时,80%以上毛管的流量降低率超过20%,1/3  相似文献   

17.
不同灌溉方式下番茄根系层土壤温度分布特征   总被引:2,自引:0,他引:2       下载免费PDF全文
为了探明不同灌溉方式对根区土壤温度分布的影响,本文通过2年试验,研究了温室种植番茄利用无压灌溉、滴灌和沟灌方式番茄根区土壤温度的变化特性。试验设置了3个无压灌溉处理、滴灌和沟灌处理,共5个处理,每个处理3次重复。结果表明:根区土壤温度随着土层深度变化而变化,相同土层深度,无压灌溉比沟灌和滴灌温度高。0~25cm土层日平均温度,无压灌溉处理比沟灌高1.02—1.05℃,比滴灌高0.72—0.85℃;土壤温度最大差值发生在15cm土层。根区土壤温度日振幅变化,无压灌溉表现的更明显,无压灌溉比沟灌和滴灌高5.4%一10%,而且土壤温度日振幅和土壤深度之间可以用指数关系描述。研究成果为无压灌溉在温室番茄冬季生长提供依据.  相似文献   

18.
为探究滴灌带铺设长度与入口压力交互作用对灌水均匀度的影响。以3种J型(进口型号)滴灌带和1种G型(国产型号)滴灌带为研究对象,分别对不同铺设长度和入口压力组合下的滴头流量进行测定,并运用变差系数(v)、Christiansen均匀系数(Cu)及Keller均匀系数(Eu)进行了评价。结果表明:Cv、Cu、Eu均随着滴灌带铺设长度和入口压力的变化而变化,Cu与Eu呈正相关,与Cv呈负相关;以滴水孔流量变差系数Cv为判别指标,滴灌带铺设长度为200 m时,J1型入口压力为5~11 m、J2型入口压力为3~11 m的滴灌带质量等级均为A(优);入口压力在1~11 m范围时,J3型滴灌带在各压力下的质量等级均为B(良)、G型滴灌带质量等级均为D(不合格)。滴灌带铺设长度为100 m时,J型滴灌带入口压力在1~11 m范围的质量等级均为A(优);G型入口压力在1~3 m时滴灌带质量等级为C(一般)。以均匀系数Eu和Cu为判别指标,J型滴灌带铺设长度为300 m时灌水均匀度均最低,入口压力为9~11 m时灌水均匀度均最高。基于上述判别指标,本试验所选各类型滴灌带铺设长度和入口压力的最佳搭配为:J1型滴灌带铺设长度200 m、入口压力9 m;J2型滴灌带铺设长度200 m、入口压力11 m;J3型滴灌带铺设长度200 m、入口压力11 m;G型滴灌带铺设长度100 m,入口压力7 m。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号