首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanisms of norepinephrine-induced membrane responses in isolated hepatocytes from guinea-pigs and rats were compared using the suction-pipette, patch-clamp method, and intracellular Ca2+ concentration ([Ca2+]i) was measured using the Ca2+ fluorescent dye, Quin 2. The resting membrane potentials of isolated guinea-pig hepatocytes were -50 +/- 1 mV (mean +/- SD; n = 38), which is similar to that previously reported in rat hepatocytes by Sawanobori et al. (J Cell Physiol 139: 580-585, 1989). In guinea-pig hepatocytes, norepinephrine (6 microM) caused a membrane hyperpolarization, and norepinephrine (6 microM) or Ca(2+)-ionophore (A23187) (0.4 microM) caused a corresponding outward current. The sensitive current produced by norepinephrine and Ca(2+)-ionophore reversed its polarity at -74 +/- 9 mV (n = 7). The single channel recorded by cell-attached patch and inside-out patch had mean conductance of around 20 + 1 pS and was activated by 1 microM [Ca2+]i. On the other hand, neither norepinephrine (6-20 microM) nor Ca(2+)-ionophore (A 23187) (0.4 microM) caused any change in membrane potential and current in rat hepatocytes, whereas norepinephrine increased [Ca2+]i both in rat and guinea-pig hepatocytes to a similar degree. In the single-channel recording, we recorded single channels that had a mean conductance of 109.8 +/- 17.7 pS different from around 20 pS in guinea-pig. In inside-out patches, increased Ca2+ concentration from 10(-6) to 10(-3) M at the intracellular face of the membrane did not modify the single channel of rat hepatocytes. These results indicate that increased [Ca2+]i activates this channel in guinea-pigs, but that the channel activated by increased [Ca2+]i is lacking in rat hepatocytes membrane. Therefore, different mechanism operates in different species of liver cells to keep the constant state.  相似文献   

2.
The patch-clamp technique was used to examine the sensitivity of delayed rectifier K+ channels to changes in intracellular divalent cations (Mg2+ and Ca2+). During voltage-step and ramp depolarizations, a delayed rectifier K+ current (IK(dr)) was identified in renal, pulmonary, coronary, and colonic smooth muscle cells as a low-noise outward current that activated near -40 mV, was sensitive to 4-aminopyridine (4-AP), and was insensitive to charybdotoxin. During whole-cell voltage-clamp experiments in each of the cell types, the 4-AP-sensitive IK(dr) was significantly less in cells dialyzed with 10 mM Mg2+ as compared with cells in which no Mg2+ was added to the internal dialysis solution (P < or = .05, n > or = 4). In coronary artery cells, 100 microM 2-(2-aminoethyl)pyridine (an H1 receptor agonist) or 10 microM ryanodine, agents that cause an increase in [Ca2+]i, also caused a significant reduction of the 4-AP-sensitive IK(dr) similar to that produced by Mg2+. 4-AP (5 mM) significantly depolarized single renal arterial cells that were dialyzed with Mg(2+)-free solution but not those dialyzed with 10 mM Mg2+ (P < .01, n = 4). In inside-out patches of renal arterial smooth muscle cells, with 200 nM charybdotoxin in the patch pipette to block large conductance Ca(2+)-activated K+ channels, a 59 +/- 10-picosiemen K+ channel that was sensitive to cytoplasmic Mg2+ was identified. In Mg(2+)-free solution, channel open probability was 0.028 +/- 0.012 (n = 8) and 0.095 +/- 0.011 (n = 8) at +40 and +80 mV, respectively. When the bath solution was changed to one containing 5 or 15 mM Mg2+, channel open probability was significantly reduced by 66% and 68% (+40 mV) or 93% and 96% (+80 mV), respectively. This decrease in the open probability of the delayed rectifier K+ channel resulted from a concentration- and voltage-dependent decrease in mean open time. At +40 mV, time constants for the open time distribution were significantly decreased from 5.5 +/- 0.52 to 1.2 +/- 0.14 milliseconds, whereas the closed time constant was significantly increased from 634 +/- 11.1 to 820 +/- 14.4 milliseconds (P < .01, n = 4). It is concluded that a 4-AP-sensitive delayed rectifier K+ channel in both vascular and visceral smooth muscle cells is modulated by changes in intracellular Ca2+ and Mg2+ that may alter membrane potential and the contractile state of smooth muscle.  相似文献   

3.
Single canine cardiac ryanodine receptor channels were incorporated into planar lipid bilayers. Single-channel currents were sampled at 1-5 kHz and filtered at 0.2-1.0 kHz. Channel incorporations were obtained in symmetrical solutions (20 mM HEPES-Tris, pH 7.4, and pCa 5). Unitary Ca2+ currents were monitored when 2-30 mM Ca2+ was added to the lumenal side of the channel. The relationship between the amplitude of unitary Ca2+ current (at 0 mV holding potential) and lumenal [Ca2+] was hyperbolic and saturated at approximately 4 pA. This relationship was then defined in the presence of different symmetrical CsCH3SO3 concentrations (5, 50, and 150 mM). Under these conditions, unitary current amplitude was 1.2 +/- 0.1, 0.65 +/- 0.1, and 0.35 +/- 0.1 pA in 2 mM lumenal Ca2+; and 3.3 +/- 0.4, 2.4 +/- 0. 2, and 1.63 +/- 0.2 pA in 10 mM lumenal Ca2+ (n > 6). Unitary Ca2+ current was also defined in the presence of symmetrical [Mg2+] (1 mM) and low [Cs+] (5 mM). Under these conditions, unitary Ca2+ current in 2 and 10 mM lumenal Ca2+ was 0.66 +/- 0.1 and 1.52 +/- 0.06 pA, respectively. In the presence of higher symmetrical [Cs+] (50 mM), Mg2+ (1 mM), and lumenal [Ca2+] (10 mM), unitary Ca2+ current exhibited an amplitude of 0.9 +/- 0.2 pA (n = 3). This result indicates that the actions of Cs+ and Mg2+ on unitary Ca2+ current were additive. These data demonstrate that physiological levels of monovalent cation and Mg2+ effectively compete with Ca2+ as charge carrier in cardiac ryanodine receptor channels. If lumenal free Ca2+ is 2 mM, then our results indicate that unitary Ca2+ current under physiological conditions should be <0.6 pA.  相似文献   

4.
A Ca(2+)-activated Cl- conductance in rat submandibular acinar cells was identified and characterized using whole-cell patch-clamp technique. When the cells were dialyzed with Cs-glutamate-rich pipette solutions containing 2 mM ATP and 1 microM free Ca2+ and bathed in N-methyl-D-glucamine chloride (NMDG-Cl) or Choline-Cl-rich solutions, they mainly exhibited slowly activating currents. Dialysis of the cells with pipette solutions containing 300 nM or less than 1 nM free Ca2+ strongly reduced the Cl- currents, indicating the currents were Ca(2+)-dependent. Relaxation analysis of the "on" currents of slowly activating currents suggested that the channels were voltage-dependent. The anion permeability sequence of the Cl- channels was: NO3- (2.00) > I- (1.85) > or = Br- (1.69) > Cl- (1.00) > bicarbonate (0.77) > or = acetate (0.70) > propionate (0.41) > > glutamate (0.09). When the ATP concentration in the pipette solutions was increased from 0 to 10 mM, the Ca(2+)-dependency of the Cl- current amplitude shifted to lower free Ca2+ concentrations by about two orders of magnitude. Cells dialyzed with a pipette solution (pCa = 6) containing ATP-gamma S (2 mM) exhibited currents of similar magnitude to those observed with the solution containing ATP (2 mM). The addition of the calmodulin inhibitors trifluoperazine (100 microM) or calmidazolium (25 microM) to the bath solution and the inclusion of KN-62 (1 microM), a specific inhibitor of calmodulin kinase, or staurosporin (10 nM), an inhibitor of protein kinase C to the pipette solution had little, if any, effect on the Ca(2+)-activated Cl- currents. This suggests that Ca2+/Calmodulin or calmodulin kinase II and protein kinase C are not involved in Ca(2+)-activated Cl- currents. The outward Cl- currents at +69 mV were inhibited by NPPB (100 microM), IAA-94 (100 microM), DIDS (0.03-1 mM), 9-AC (300 microM and 1 mM) and DPC (1 mM), whereas the inward currents at -101 mV were not. These results demonstrate the presence of a bicarbonate- and weak acid-permeable Cl- conductance controlled by cytosolic Ca2+ and ATP levels in rat submandibular acinar cells.  相似文献   

5.
1. We have studied the effects of mibefradil, a novel calcium antagonist, on the resting potential and ion channel activity of macrovascular endothelial cells (calf pulmonary artery endothelial cells, CPAE). The patch clamp technique was used to measure ionic currents and the Fura-II microfluorescence technique to monitor changes in the intracellular Ca2+ concentration, [Ca2+]i. 2. Mibefradil (10 microM) hyperpolarized the membrane potential of CPAE cells from its mean control value of -26.6 +/- 0.6 mV (n = 7) to -59.8 +/- 1.7 mV (n = 6). A depolarizing effect was observed at higher concentrations (-13.7 +/- 0.6 mV, n = 4, 30 microM mibefradil). 3. Mibefradil inhibited Ca(2+)-activated Cl- currents, ICl,Ca, activated by loading CPAE cells via the patch pipette with 500 nM free Ca2+ (Ki = 4.7 +/- 0.18 microM, n = 8). 4. Mibefradil also inhibited volume-sensitive Cl- currents, ICl,vol, activated by challenging CPAE cells with a 27% hypotonic solution (Ki = 5.4 +/- 0.22 microM, n = 6). 5. The inwardly rectifying K+ channel, IRK, was not affected by mibefradil at concentrations up to 30 microM. 6. Ca2+ entry activated by store depletion, as assessed by the rate of [Ca2+]i-increase upon reapplication of 10 mM extracellular Ca2+ to store-depleted cells, was inhibited by 17.6 +/- 6.5% (n = 8) in the presence of 10 microM mibefradil. 7. Mibefradil inhibited proliferation of CPAE cells. Half-maximal inhibition was found at 1.7 +/- 0.12 microM (n = 3), which is similar to the concentration for half-maximal block of Cl- channels. 8. These actions of mibefradil on Cl- channels and the concomitant changes in resting potential might, in addition to its effect on T-type Ca2+ channels, be an important target for modulation of cardiovascular function under normal and pathological conditions.  相似文献   

6.
1. The effects of imidazopyrazine derivative, SCA40, on the activity of single large conductance, Ca(2+)-activated K+ (BKCa) channels in inside-out and outside-out patches from bovine tracheal smooth muscle (BTSM) cells in culture have been compared with those of two established BKCa channel openers, NS 004 and NS 1619. 2. The presence of BKCa channels on inside-out patches of BTSM membranes was confirmed by the single channel conductance (240 pS), selectivity for K+, dependence of channel activity on [Ca2+]i, and sensitivity to the selective BKCa channel blocker, iberiotoxin. 3. NS 004 and ND 1619 (3-30 microM) induced concentration-related increases in open state probability of BKCa channels when applied to either inside-out or outside-out BTSM patches, thus confirming that these compounds are activators of the BKCa channel in this preparation. 4. SCA40 (0.1-10 microM) had no effect on the activity of BKCa channels when applied to either inside-out or outside-out patches which subsequently responded to the application of NS 004 (10-20 microM). 5. It is concluded that SCA40 does not have a direct effect on BKCa channel activity in BTSM patches and that the previously reported relaxant action of SCA40 on tracheal smooth muscle is unlikely to be mediated by this mechanism.  相似文献   

7.
We used patch clamp methodology to investigate how glomerular mesangial cells (GMC) depolarize, thus stimulating voltage-dependent Ca2+ channels and GMC contraction. In rat GMC cultures grown in 100 mU/ml insulin, 12% of cell-attached patches contained a Ca(2+)-dependent, 4-picosiemens Cl- channel. Basal NPo (number of channels times open probability) was < 0.1 at resting membrane potential. Acute application of 1-100 nM angiotensin II (AII) or 0.25 microM thapsigargin (to release [Ca2+]i stores) increased NPo. In GMC grown without insulin, Cl- channels were rare (4%) and unresponsive to AII or thapsigargin in cell-attached patches, and less sensitive to [Ca2+]i in excised patches. GMC also contained 27-pS nonselective cation channels (NSCC) stimulated by AII, thapsigargin, or [Ca2+]i, but again only when insulin was present. In GMC grown without insulin, 15 min of insulin exposure increased NPo (insulin > or = 100 microU/ml) and restored AII and [Ca2+]i responsiveness (insulin > or = 1 microU/ml) to both Cl- and NSCC. GMC AII receptor binding studies showed a Bmax (binding sites) of 2.44 +/- 0.58 fmol/mg protein and a Kd (binding dissociation constant) of 3.02 +/- 2.01 nM in the absence of insulin. Bmax increased by 86% and Kd was unchanged after chronic (days) insulin exposure. In contrast, neither Kd nor Bmax was significantly affected by acute (15-min) exposure. Therefore, we concluded that: (a) rat GMC cultures contain Ca(2+)-dependent Cl- and NSCC, both stimulated by AII. (b) Cl- efflux and cation influx, respectively, would promote GMC depolarization, leading to voltage-dependent Ca2+ channel activation and GMC contraction. (c) Responsiveness of Cl- and NSCC to AII is dependent on insulin exposure; AII receptor density increases with chronic, but not acute insulin, and channel sensitivity to [Ca2+]i increases with both acute and chronic insulin. (d) Decreased GMC contractility may contribute to the glomerular hyperfiltration seen in insulinopenic or insulin-resistant diabetic patients.  相似文献   

8.
1. To assess the action of nitric oxide (NO) and NO-donors on K+ current evoked either by voltage ramps or steps, patch clamp recordings were made from smooth muscle cells freshly isolated from secondary and tertiary branches of the rat mesenteric artery. 2. Inside-out patches contained channels, the open probability of which increased with [Ca2+]i. The channels had a linear slope conductance of 212+/-5 pS (n = 12) in symmetrical (140 mM) K+ solutions which reversed in direction at 4.4 mV. In addition, the channels showed K+ selectivity, in that the reversal potential shifted in a manner similar to that predicted by the Nernst potential for K+. Barium (1 mM) applied to the intracellular face of the channel produced a voltage-dependent block and external tetraethylammonium (TEA; at 1 mM) caused a large reduction in the unitary current amplitude. Taken together, these observations indicate that the channel most closely resembled BK(Ca). 3. In five out of six inside-out patches, NO (45 or 67 microM) produced an increase in BK(Ca) activity. In inside-out patches, BK(Ca) activity was also enhanced in some patches with 100 or 200 microM 3-morpholino-sydnonimine (SIN-1) (4/11) and 100 microM sodium nitroprusside (SNP) (3/8). The variability in channel opening with the NO donors may reflect variability in the release of NO from these compounds. 4. In inside-out patches, 100 microM SIN-1 failed to increase BK(Ca) activity (in all 4 patches tested), while at a higher (500 microM) concentration SIN-1 had a direct blocking effect on the channels (n = 3). NO applied directly to inside-out patches increased (P < 0.05) BK(Ca) activity in two patches. 5. In the majority of cells (6 out of 7), application of NO (45 or 67 microM) evoked an increase in the amplitude of whole-cell currents in perforated patches. This action was not affected by the soluble guanylyl cyclase inhibitor, 1H-[1,2,4] oxadiazolo [4,3-a]quinoxalin-1-one (ODQ). An increase in whole-cell current was also evoked with either of the NO donors, SIN-1 or SNP (each at 100 microM). With SIN-1, the increase in current was blocked with the BK(Ca) channel blocker, iberiotoxin (50 nM). 6. With conventional whole-cell voltage clamp, the increase in the outward K+ current evoked with SIN-1 (50-300 microM) showed considerable variability. Either no effect was obtained (11 out of 18 cells), or in the remaining cells, an average increase in current amplitude of 38.7+/-10.2% was recorded at 40 mV. 7. In cell-attached patches, large conductance voltage-dependent K+ channels were stimulated by SIN-1 (100 microM) applied to the cell (n = 5 patches). 8. These data indicate that NO and its donors can directly stimulate BK(Ca) activity in cells isolated from the rat mesenteric artery. The ability of NO directly to open BK(Ca) channels could play an important functional role in NO-induced relaxation of the vascular smooth muscle cells in this small resistance artery.  相似文献   

9.
Nonselective cation channels have been identified and linked to important cell functions in rat hepatocytes. In this study, we characterized inward rectifying nonselective cation channels in detail by the patch clamp technique in human HepG2 cells. Channel properties were studied with high resistance borosilicate pipettes in cell-attached and inside-out configurations. With Ringer's solution and KCl as pipette solutions, the conductances were 19.7 +/- 2.1 and 22.2 +/- 0.0 picosiemens (pS), and reversal potentials were 30.9 +/- 3.5 and 31.3 +/- 4.6 mV, respectively. The channel was permeable to Ba2+, and the sequence of permeability ratios was Na+ > K+ > Cs+ > Ba2+. In the cell-attached configuration, the channel had a higher opening probability at depolarizing potential than at hyperpolarizing. In the inside-out patches with symmetric Ringer's solution, the current voltage curve was linear with conductance of 19.8 +/- 0.9 pS. Reversal potential shifted from -0.2 +/- 1.0 mV to 23.2 +/- 1.0 mV when the bath solution was replaced by dilute Ringer's solution. In the inside-out configuration, the gating was Ca(2+)-dependent, and the opening probability increased with increasing intracellular calcium concentration ([Ca2+]i). An outward rectifying channel appeared when [Ca2+]i was less than 1 mumol/L. The nonselective channel was reversibly blocked by 10 mumol/L internal flufenamic acid. We conclude that Ca(2+)- and voltage-dependent nonselective cation channels are present in human HepG2 cells. The channels might be involved in the regulation of Ca2+ influx and are associated with activation of other ion channels.  相似文献   

10.
We have shown previously that the non-steroidal anti-inflammatory drug flufenamate (FFA) causes a maintained increase in [Ca2+]i and transient increases in a Ca(2+)-activated nonselective cation current (ICAN) and a Ca(2+)-activated slow, outward Cl- current (lo-slow) in molluscan neurons [Shaw T., Lee R.J., Partridge L.D. Action of diphenylamine carboxylate derivatives, a family of non-steroidal anti-inflammatory drugs, on [Ca2+]i and Ca(2+)-activated channels in neurons. Neurosci Lett 1995; 190:121-124]. Here we demonstrate that pretreatment of neurons with 10 microM thapsigargin eliminates the FFA-induced increase in [Ca2+]i and substantially reduces both ICAN and Io-slow supporting the hypothesis that the FFA-induced increase in [Ca2+]i results primarily from Ca2+ release from a thapsigargin-sensitive intracellular store. The [Ca2+]i response appears to be sustained, not by influx of extracellular Ca2+, but by inhibitory effects of FFA on Ca2+ removal from the cytosol. Inhibition of Ca2+ efflux may be an important component of the FFA-induced activation of both ICAN and Io-slow, as Ca2+ release by thapsigargin alone is not sufficient to activate either current. Our data also demonstrate that the effects of FFA on [Ca2+]i, ICAN and Io-slow are reversible and suggest that protein phosphorylation as well as an increase in [Ca2+]i are involved in the FFA-induced activation of Io-slow. Effects on neuronal Ca2+ handling as well as activation of ICAN or Io-slow may partially explain the analgesic effects of FFA.  相似文献   

11.
To determine whether functional Ca2+ channels are present in vestibular dark cells, changes in intracellular Ca2+ concentration ([Ca2+]i) due to K+ applications were measured using the Ca(2+)-sensitive dye (fura-2) and patchclamp whole-cell recordings were made in dark cells isolated from the ampullae of the semicircular canal of the guinea pig. Exchange of the external solution with a buffer medium containing a high K+ concentration (80 mM K+ or 150 mM K+) caused a concentration-dependent increase in [Ca2+]i in vestibular dark cells. Application of 1 microM nifedipine as a Ca2+ channel antagonist completely blocked the increase in [Ca2+]i. Further treatment with 10 microM BAY K 8644 as a Ca2+ channel agonist caused an increase in [Ca2+]i. In the patch-clamp whole-cell recordings a 1-s depolarizing pulse given into the dark cell in the presence of a high barium concentration (50 mM Ba2+) induced an inward current. In determining the current-voltage relationship, a current was detected at a potential that depolarized at-50 mV and was maximal at +10 mV. This inward current was completely blocked by 1 mM La3+ as a Ca2+ channel antagonist. These findings suggest the presence of voltage-dependent Ca2+ channels in dark cells, which have a presumed function in the regulation of [Ca2+]i in the vestibular endolymph.  相似文献   

12.
The effects of ketamine on Ca(2+)-activated K+ channel currents were studied in dispersed single smooth muscle cells from rabbit portal vein using inside-out patch clamp technique. In a near physiological K+ and Ca2+ gradient, three populations of outward rectangular single currents were recorded in isolated cell membrane of rabbit portal vein at +60 mV membrane potential. These currents were judged as Ca(2+)-activated K+ channel currents since application of EGTA or Apamin in the internal solution inhibited these currents. Application of 10(-5)M or 10(-4)M ketamine inhibited the number of occurrences of channel opening and decreased open times, but did not reduce the amplitudes. When the 10(-3)M ketamine was applied, the Ca(2+)-activated K+ channel currents were abolished. We suggest that the depression of Ca(2+)-activated K+ channel currents may explain the continuous contraction observed in rabbit portal vein at a clinical concentration of ketamine from a point of electrophysiological K+ current study.  相似文献   

13.
We investigated changes in whole-cell currents, cell volume, and intracellular calcium concentration ([Ca2+]i) during hypotonic stimulation in whole-cell clamped cultured amphibian renal cells (A6 cells). Upon being exposed to hypotonic solution (80% osmolality), the A6 cells swelled and peaked in the first 5 min, which was followed by a progressive decrease in cell volume termed regulatory volume decrease (RVD). Following the cell swelling, there were large increases in both outward- and inward-currents, which seemed to be carried by K+ efflux and Cl- efflux, respectively. A K+ channel blocker (TEA or quinine) or a Cl- channel blocker (NPPB or SITS) significantly inhibited both currents and RVD, suggesting that the inward- and outward-currents are highly correlated with each other and essential to RVD. Hypotonic stimulation also induced a transient [Ca2+]i increase, of which the time course was essentially similar to that of the currents. When internal and external Ca2+ were deprived to eliminate the Ca2+ transient increase, whole-cell currents and RVD were strongly inhibited. On the other hand, channel blockers TEA and NPPB, which inhibited whole-cell currents and RVD, did not inhibit the [Ca2+]i increase. It is concluded that hypotonic stimulation to A6 cells first induces cell swelling, which is followed by [Ca2+]i increase that leads to the coactivation of K+ and Cl- channels. This coactivation may accelerate K+ and Cl- effluxes, resulting in RVD.  相似文献   

14.
We have used the patch clamp technique combined with simultaneous measurement of intracellular Ca2+ to record ionic currents activated by depletion of intracellular Ca(2+)-stores in endothelial cells from human umbilical veins. Two protocols were used to release Ca2+ from intracellular stores, i.e. loading of the cells via the patch pipette with Ins(1,4,5)P3, and extracellular application of thapsigargin. Ins(1,4,5)P3 (10 microM) evoked a transient increase in [Ca2+]i in cells exposed to Ca(2+)-free extracellular solutions. A subsequent reapplication of extracellular Ca2+ induced an elevation of [Ca2+]i. These changes in [Ca2+]i were very reproducible. The concomitant membrane currents were neither correlated in time nor in size with the changes in [Ca2+]i. Similar changes in [Ca2+]i and membrane currents were observed if the Ca(2+)-stores were depleted with thapsigargin. Activation of these currents was prevented and holding currents at -40 mV were small if store depletion was induced in the presence of 50 microM NPPB. This identifies the large currents, which are activated as a consequence of store-depletion, as mechanically activated Cl- currents, which have been described previously [1,2]. Loading the cells with Ins(1,4,5)P3 together with 10 mM BAPTA induced only a very short lasting Ca2+ transient, which was not accompanied by activation of a detectable current, even in a 10 mM Ca(2+)-containing extracellular solution. Also thapsigargin does not activate any membrane current if the pipette solution contains 10 mM BAPTA (ruptured patches). The contribution of Ca(2+)-influx to the membrane current during reapplication of 10 mM extracellular calcium to thapsigargin-pretreated cells was estimated from the first time derivative of the corresponding Ca2+ transients at different holding potentials. These current values showed strong inward rectification, with a maximal amplitude of 1.0 +/- 0.3 pA at -80 mV (n = 8; membrane capacitance 59 +/- 9 pF).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
OBJECTIVES: Human cardiac muscle from failing heart shows a decrease in active tension development and a rise in diastolic tension at stimulation frequencies above 50-60 beats/min due to both systolic and diastolic dysfunction. We have investigated underlying changes in cellular [Ca2+]i regulation. METHODS: Single ventricular myocytes were isolated enzymatically from the explanted hearts of transplant recipients with ischemic cardiomyopathy (nhearts = 5 ncells = 15) or dilated cardiomyopathy (nhearts = 6, ncells = 19). Cells were studied during whole-cell patch clamp with fluo-3 and fura-red as [Ca2+]i indicators (36 +/- 1 degrees C). RESULTS: In current clamp mode (action potential recording), the amplitude of Ca2+ release from the sarcoplasmic reticulum (SR) decreased at stimulation frequencies above 0.5 Hz; this decrease was more pronounced for cells from dilated cardiomyopathy. Diastolic [Ca2+]i increased at 1 and 2 Hz for both groups. Action potential duration (APD90) decreased with frequency in all cells; in addition there was a drop in plateau potential of 10 +/- 1 mV for cells from ischemic cardiomyopathy and of 13 +/- 2 mV for cells from dilated cardiomyopathy. In voltage clamp mode the L-type Ca2+ current showed reversible decrease during stimulation at 1 and 2 Hz. Recovery from inactivation during a double pulse protocol was slow (75 +/- 3% at 500 ms, 89 +/- 3% at 1000 ms) and followed the decay of the [Ca2+]i transient. CONCLUSIONS: The negative force-frequency relation of the failing human heart is due to a decrease in Ca2+ release of the cardiac myocytes at frequencies > or = 0.5 Hz, more pronounced in dilated than in ischemic cardiomyopathy. Inhibition of ICaL at higher frequencies, at least partially related to an increase in diastolic [Ca2+]i, will contribute to this negative staircase because of a decrease in the trigger for Ca2+ release, and of decreased loading of the SR.  相似文献   

16.
The effects of myosin light chain kinase inhibitors on muscarinic stimulation-activated nonselective cationic current (ICCh) in guinea-pig gastric antral myocytes were studied using the whole-cell patch-clamp technique. ICCh was induced by carbachol (CCh, 50 microM) at a holding potential of -30 mV or -60 mV. ML-7, a chemical inhibitor of myosin light chain kinase (MLCK), inhibited ICCh concentration dependently in a reversible manner (53 +/- 8.6% at 1 microM, mean +/- SE, n = 11). In addition, amplitudes of ICCh were only 37 +/- 2.7% of the daily control values following the addition of a peptide inhibitor of MLCK to the pipette solution. On the other hand, ML-7 had an inhibitory effect on voltage-operated Ca2+ channel current. The peak value of Ba2+ current at 0 mV was reduced to 35 +/- 7.4% (n = 9) by 3 microM of ML-7. As ICCh is known to have an intracellular Ca2+ dependence, we tried to exclude the possibility that ML-7 inhibited ICCh indirectly via suppression of Ca2+ current and the similar inhibitory effects of ML-7 on ICCh were confirmed under the following conditions: (1) clamp of membrane potential at -60 mV; (2) clamp of intracellular [Ca2+] to 1 microM by 10 mM BAPTA; (3) pre-inhibition of Ca2+ channel by verapamil. Different from the effects on ICCh, ML-7 barely inhibited the same cationic current induced by guanosine 5'-O-(3-thiotriphosphate) (GTP[gammaS], 0.2 mM) in the pipette solution. These results suggest that a Ca2+/calmodulin-MLCK-dependent pathway can modulate the activation of ICCh in guinea-pig gastric antral myocytes.  相似文献   

17.
1. The effects of the lipoxygenase inhibitor nordihydroguaiaretic acid (NDGA) on the ionic currents of rat carotid body type I cells were investigated by use of whole-cell and outside-out patch clamp techniques. 2. NDGA (5-50 microM) produced a concentration-dependent inhibition of whole-cell K+ currents at all activating test potentials (holding potential -70 mV). The time-course of the inhibition was also concentration-dependent and the effects of NDGA were only reversible following brief periods of exposure (<2 min). Another lipoxygenase inhibitor, phenidone (5 microM), was without effect on whole-cell K+ currents in carotid body type I cells. 3. NDGA (5-50 microM) also inhibited whole-cell Ca2+ channel currents (recorded with Ba2+ as charge carrier) in a concentration-dependent manner. 4. Isolation of voltage-gated K+ channels by use of high [Mg2+] (6 mM), low [Ca2+] (0.1 mM) solutions revealed a direct inhibition of the voltage-sensitive component of the whole-cell K+ current by NDGA (50 microM). 5. In excised, outside-out patches NDGA (20-50 microM) increased large conductance, Ca2+ activated K+ channel activity approximately 10 fold, an effect which could be reversed by either tetraethylammonium (10 mM) or charybdotoxin (30 nM). 6. It is concluded that NDGA activates maxi-K+ channels in carotid body type I cells and over the same concentration range inhibits voltage-sensitive K+ and Ca2+ channels. The inhibition of whole cell K+ currents seen is most likely due to a combination of direct inhibition of the voltage-sensitive K+ current and indirect inhibition of maxi-K+ channel activity through blockade of Ca2+ channels.  相似文献   

18.
The supernatant from a suspension of Ehrlich cells exposed to centrifugation at 700xg for 45 s induced a transient increase in the intracellular concentration of free, cytosolic Ca2+, [Ca2+]i, as well as activation of an outwardly rectifying whole-cell current when added to a suspension of non-stimulated cells. These effects were inhibited by suramin, a non-specific P2 receptor antagonist, and mimicked by ATP. Reversed phase HPLC analysis revealed that the supernatant from Ehrlich cells exposed to centrifugation contained 2. 6+/-0.2 microM ATP, and that the mechanical stress-induced release of ATP was inhibited by glibenclamide and verapamil, non-specific inhibitors of the cystic fibrosis transmembrane conductance regulator and P-glycoprotein, respectively. After trypan blue staining, less than 0.5% of the cells were unable to extrude the dye. Addition of extracellular ATP induced a suramin-sensitive, transient, concentration-dependent increase in [Ca2+]i, activation of an outwardly rectifying whole-cell current and a hyperpolarization of the plasma membrane. The ATP-induced hyperpolarization of the plasma membrane was strongly inhibited in the presence of charybdotoxin (ChTX), an inhibitor of several Ca2+-activated K+ channels, suggesting that stimulation of P2 receptors in Ehrlich cells evokes a Ca2+-activated K+ current. The relative potencies of several nucleotides (ATP, UTP, ADP, 2-MeSATP, alpha,beta-MeATP, bzATP) in eliciting an increase in [Ca2+]i, as well as the effect of repetitive addition of nucleotides were investigated. The results lead us to conclude that mechanical stimulation of Ehrlich cells leads to release of ATP, which in turn stimulates both P2Y1 and P2Y2 receptors, resulting in Ca2+ influx as well as release and activation of an outwardly rectifying whole-cell current.  相似文献   

19.
The patch-clamp technique was used to characterise the ion channels in cells located in the mid region of mouse jejunal crypts. Six different channels were seen. A large outwardly rectified K+ channel (BK) (conductance, g at 0 mV = 92 +/- 6 pS), which was highly selective for K+ [PK+ (1) > PRb+ (0.6) > PCs+ (0.09) approximately PNa+ (0.07) > PLi+ (0.04)], had a low, voltage-independent open probability (Po) in the on-cell (O/C) configuration and appeared in 66% of the patches. In inside-out (I/O) patches, this channel had a linear current/voltage (I/V) relationship (g = 132 +/- 3 pS), Po was voltage dependent and it was blocked by cytoplasmic Ba2+ (5 mmol/l). An intermediate K+ channel (IK) which was present in 49% of O/C patches, had a linear I/V (g = 38 +/- 3 pS), ran-down in O/C patches, and was not seen in I/O patches. A number of smaller channels (SC) with conductances ranging from 5 to 20 pS were seen in 16% of O/C patches. Also present in the basolateral membrane were a Cl- channel (ICOR) and a nonselective cation channel (NSCC). These channels were only seen in I/O patches. ICOR had an outwardly rectified conductance (g at 0 mV = 36 +/- 2 pS), its Po was independent of voltage and unaffected by variations in cytoplasmic Ca2+ (100 nmol/l to 1 mmol/l) or ATP (0-1 mmol/l). The NSCC had a linear conductance (20 +/- 1 pS), its Po increased with depolarisation and elevation of cytoplasmic [Ca2+] (> or = 10 micromol/l), but was reduced by cytoplasmic ATP. None of the basolateral channels described here were activated by cAMP-dependent secretagogues, although a Cl- conductance was activated. This cAMP-dependent Cl- conductance was distinct from the basolateral Cl- channel and thus is most likely located in the apical membrane.  相似文献   

20.
The progesterone-initiated human sperm acrosome reaction (AR) requires a rise in intracellular Ca2+ ([Ca2+]i), extracellular Cl- and apparently increased Cl- flux through a unique steroid receptor/Cl- channel resembling but not identical to a GABA(A)/Cl- channel complex. The present study uses fura-2 loaded human sperm, GABA(A)/Cl- channel blockers (picrotoxin and pregnenolone sulfate) and Cl(-)-containing and Cl(-)-deficient media to determine whether the progesterone-mediated increase in [Ca2+]i is dependent on the Cl- requirement. There was no significant difference between the progesterone-mediated increases of [Ca2+]i obtained in Cl(-)-containing and Cl(-)-deficient media. Picrotoxin did not significantly inhibit the progesterone-mediated increase in [Ca2+]i, and pregnenolone sulfate increased [Ca2+]i to the same extent as progesterone. These results strongly suggest that the increase in [Ca2+]i essential to the AR is independent of the AR Cl- requirement and could be explained by the existence of two different sperm plasma membrane progesterone receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号