首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
以Nomex蜂窝和新型自粘接预浸料作为试验材料,通过采用均压板的共固化工艺制备蜂窝夹层板.采用滚筒剥离方法测试其面-芯结合性能,采用电子显微镜等方法观察其蒙皮-蜂窝粘接面、剥离后蒙皮表面结构及蜂窝壁端面的微观形态,并测试了蜂窝壁厚度与蜂窝壁浸渍的树脂成分.结合以上测试结果研究了在采用均压板的制备过程中工艺参数和蜂窝特征对蜂窝夹层板面-芯结合强度的影响规律,并考察了蜂窝夹层板的粘接形式.结果表明:在采用均压板模具的共固化工艺中,一定的升温速率范围内,蜂窝板的面-芯结合强度随着升温速率的减小而增大;而加压时机对蜂窝板的面-芯结合强度的大小没有明显的影响;蜂窝壁端面越粗糙、蜂窝壁树脂层厚度越小,夹层板的面-芯结合强度越好.  相似文献   

2.
Core machining is often applied to improve the formativeness of foam core and the manufacturing effectiveness of sandwich panels. This paper investigates the effects of core machining configuration on the interfacial debonding toughness of foam core sandwich panels fabricated by vacuum-assisted resin transfer molding process. Several machining configurations are conducted to foam core, and skin–core debonding toughness of fabricated sandwich panels is evaluated using double-cantilever-beam tests. The sandwich panels with core cuts exhibited higher apparent fracture toughness than the panels without core cut, specifically in the case of perforated core. The relationship between core machining configuration and measured fracture toughness is discussed based on the experimental observations and the numerical analyses of energy release rates.  相似文献   

3.
A sandwich three-point bend specimen has recently been proposed to test mode-I interlaminar fracture toughness for fiber-reinforced composite materials. The test composite consist of a thin layer bonded by two lateral reusable steel bars (Sohn et al. 1995). Some time earlier this specimen configuration was used to test fracture toughness of adhesives (Zdaniewsk et al. 1987). However, formulae for analysing its fracture mechanics parameters such as stress intensity factor and energy release rate can not be found in the literature. The lack of adequate formulae may explain why suitable quantitative analysis using this specimen configuration has not been achieved. In this paper, a simple and effective homogenisation method is used to change the bi-material system, which represents the specimen, into single uniform test material. This physical homogenisation is carried out by geometric change of the cross section of lateral steel parts based on equal deflection rigidity. For the transformed specimen configuration of single uniform material, the corresponding stress intensity factor solution from handbooks is available. Two formulae of stress intensity factor for the sandwich three-point bend specimen are given as upper limit and lower limit respectively, they are plotted with varying elastic tensile modulus mismatch. Then the relation between stress intensity factor and energy release rate, with special consideration of orthotropy of the tested composite material, is used to derive its energy release rate. The specimen and its formulae can also be applied to test other materials such as wood, welded joints (Burstow and Ainsworth, 1995), as well as to test dynamic fracture toughness. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
采用真空辅助树脂注射(VARI)成型工艺制备不同缝合方式和缝合密度的缝合泡沫夹层复合材料,研究缝合参数对平面拉伸、三点弯曲、芯子剪切以及滚筒剥离性能的影响。结果表明:缝合使泡沫夹层复合材料的平面拉伸强度和芯子剪切强度明显降低,可以改善弯曲性能并大幅提高滚筒剥离性能,改进锁式缝合方式优于临缝式缝合方式;适当地增加缝合行距对力学性能有一定的积极作用,但不利于滚筒剥离性能的提高;与未缝合泡沫夹层复合材料相比,当缝合密度为30 mm×10 mm时,改进锁式缝合泡沫夹层复合材料的平拉强度和芯子剪切强度分别降低了14.75%和24.79%,弯曲强度和平均剥离强度分别提高了7.96%和80.78%。  相似文献   

5.
This study considers the embedment of a bioinspired vasculature within a composite structure that is capable of delivering functional agents from an external reservoir to regions of internal damage. Breach of the vascules, by propagating cracks, is a crucial pre-requisite for such a self-healing system to be activated. Two segregated vascule fabrication techniques are demonstrated, and their interactions with propagating Mode I and II cracks determined. The vascule fabrication route adopted played a significant role on the resulting laminate morphology which in-turn dictated the crack-vascule interactions. Embedment of the vascules did not lower the Mode I or II fracture toughness of the host laminate, with vascules orientated transverse to the crack propagation direction leading to significant increases in GI and GII through crack arrest. Large resin pockets were found to redirect the crack around the vascules under Mode II conditions, therefore, it is recommended to avoid this configuration for self-healing applications.  相似文献   

6.
The aim of this paper is the fabrication and mechanical testing of entangled sandwich beam specimens and the comparison of their results with standard sandwich specimens with honeycomb and foam as core materials. The entangled sandwich specimens have glass fiber cores and glass woven fabric as skin materials. The tested glass fiber entangled sandwich beams possess low compressive and shear modulus as compared to honeycomb and foam sandwich beams of the same specifications. Although the entangled sandwich beams are heavier than the honeycomb and foam sandwich beams, the vibration tests show that the entangled sandwich beams possess higher damping ratios and low vibratory levels as compared to honeycomb and foam sandwich beams, making them suitable for vibro-acoustic applications where structural strength is of secondary importance, e.g., internal paneling of a helicopter.  相似文献   

7.
以Nomex蜂窝和新型自粘接预浸料作为试验材料, 通过采用均压板的共固化工艺制备蜂窝夹层板。采用滚筒剥离方法测试其面-芯结合性能, 采用电子显微镜等方法观察其蒙皮-蜂窝粘接面、剥离后蒙皮表面结构及蜂窝壁端面的微观形态, 并测试了蜂窝壁厚度与蜂窝壁浸渍的树脂成分。结合以上测试结果研究了在采用均压板的制备过程中工艺参数和蜂窝特征对蜂窝夹层板面-芯结合强度的影响规律, 并考察了蜂窝夹层板的粘接形式。结果表明: 在采用均压板模具的共固化工艺中, 一定的升温速率范围内, 蜂窝板的面-芯结合强度随着升温速率的减小而增大; 而加压时机对蜂窝板的面-芯结合强度的大小没有明显的影响; 蜂窝壁端面越粗糙、蜂窝壁树脂层厚度越小, 夹层板的面-芯结合强度越好。  相似文献   

8.
Specific interactions between chemical environments (hydrochloric acid, sulphuric acid and distilled water) and glass fibre cause stress corrosion cracking in the glass fibre surface. The etching of the glass fibre gives rise to an extraction process. Axial or spiral cracks can then be observed. These effects depend on the fibre diameter, the etching time and the chemical environment and cause a drop in tensile stresses. The glass fibre crumbles with increasing etching time.Strict etching procedures lead to definite extraction processes and crack structures in the glass fibres and will be discussed in connection with strength tests.In addition to investigations of individual elements, e.g. glass fibres, it is also possible that whole glass fibre reinforced composites are damaged during service under the influence of aggressive surrounding media. In such cases, circular or spiral-shaped cracks can also be observed preferentially in the glass fibre. The fibres can then no longer contribute to an increase in strength and the result is the untimely failure of the composite material.  相似文献   

9.
提出了一种由齿板-玻璃纤维(TP-GF)混合面板和聚氨酯(PU)泡沫芯材组成的新型TP-GF/PU泡沫夹层梁,结构中金属板通过齿钉压入GF与内部芯材连接,该夹层梁采用真空导入模压工艺制作。通过低速冲击试验,研究了不同冲击能量、纤维厚度和泡沫密度下TP-GF/PU泡沫夹层梁的冲击响应和损伤模式,并与普通的夹层梁进行了对比分析;通过双悬臂梁试验研究了混合夹层梁的界面性能,计算了夹层梁的应变能释放率。结果表明:在22 J、33 J、44 J能量冲击下,泡沫芯材密度为150 kg/m3的TP-GF/PU泡沫夹层梁的最大接触力较普通夹层梁分别提高了31.2%、48.6%、33.3%,冲击能量吸收分别增加了17.2%、11.3%、15.5%;随着冲击能量、面板纤维层数及芯材密度的增加,TP-GF/PU泡沫夹层梁最大接触力增大,密度较低的TP-GF/PU泡沫夹层梁损伤形式主要为面板的局部弯曲,而芯材密度较高的TP-GF/PU泡沫夹层梁则以穿透损伤为主;增加泡沫芯材密度和面板纤维厚度能够提高TP-GF/PU泡沫夹层梁的抗冲击性能,随着芯材密度的增大TP-GF/PU泡沫夹层梁的应变能释放率峰值越高,界面性能越好。   相似文献   

10.
A study has been undertaken of fatigue in glass fibre reinforced composites. Two matrix resins were tested: a standard polyester and a polyurethane-vinyl-ester, which was designed to have a higher toughness. Three different types of glass fibre fabrics were used for reinforcement: a conventional woven roving and two stitch-bonded cloths. The glass cloths were combined into various lay-ups, in order to consider the effects of matrix, cloth and lay-up on the fatigue strength. Additionally, a study was undertaken to evaluate the micromechanisms that occurred during fatigue and how damage accumulated throughout the sample lifetime. This involved measuring stiffness changes during fatigue cycling, followed by microscopic study of the samples. It was found that similar damage micromechanisms occurred in each lay-up regardless of resin and cloth type, and these included matrix cracking, delamination and fibre breakage. However, differences were observed in the extent, location and rate of damage, and these were consistent with the variations seen in the fatigue strengths.  相似文献   

11.
以PVC泡沫或Balsa轻木为芯材的玻璃纤维增强树脂基复合材料(GRP)夹芯板目前广泛应用于船舶与海洋工程结构中。论文设计不同参数的GRP夹芯板-钢板混合接头模型,进行四点弯曲加载下的静力及疲劳试验研究,同时运用ABAQUS软件结合MSC.fatigue软件对接头的静态及疲劳弯曲失效进行数值模拟,分析了接头的弯曲强度、刚度和失效模式,并研究了接头填充区材料及长度、钢板嵌入填充区长度等参数对接头弯曲性能的影响。结果表明:弯曲载荷作用下接头破坏发生在连接结合部,失效模式则因填充区的不同设计而不同;对提高接头的弯曲性能较为明显的设计参数包括将钢板延伸到接头填充区或者选择Balsa轻木替代PVC泡沫芯材;对于受到疲劳弯曲载荷的接头模型,在较大疲劳载荷水平下,所有试件在未达到106次循环时均发生了疲劳破坏;而在相对较小的疲劳载荷水平下,经过106次循环后所有试件全部完好,并且接头的剩余强度与疲劳试验前的静强度相近,表明小载荷水平下接头的疲劳次数对其承载能力无影响。  相似文献   

12.
为探索复合材料结构在外部激励作用下的振动能量传递及分布特性,基于结构声强法对玻璃纤维增强塑料夹层板的振动能量可视化技术进行了研究。基于结构声强概念,结合复合材料结构层合理论推导了玻璃纤维增强塑料夹层板的结构声强解析表达式;给出了基于有限元数值方法的结构声强可视化计算实现流程,利用Python和Matlab语言编写了相应计算程序;接着从固有频率、振型及结构声强矢量三个方面验证了所提出可视化程序的有效性;以玻璃纤维增强塑料夹层板为例,利用结构声强技术提供的图形信息实现了激励源定位及振动能量传递特性的可视化分析;最后提取了剪切分量、扭转分量和弯曲分量对结构声强矢量的贡献情况,直观展示了剪切分量在振动能量传递过程中的决定性作用。  相似文献   

13.
采用双悬臂梁(DCB)试验研究了具有不同密度的PMI泡沫芯体的玻璃纤维增强复合材料夹芯梁界面裂纹曲折破坏路径。基于包含裂纹的物质点算法(MPM), 建立了与试验研究相适应的MPM模型, 在不同的面板/芯体模量比下计算了界面裂纹裂尖模态比和曲折破坏角, 并结合曲折破坏准则模拟了界面裂纹曲折破坏路径。数值模拟结果和试验现象吻合良好, 说明了本文中数值分析模型和方法的有效性。研究结果表明, 面板材料和芯体材料模量失配越严重, 界面裂纹发生曲折破坏时的破坏角越大; 裂纹折入芯体后, 在 Ⅰ 型为主的加载模式的支配下以基本平行于界面的方向扩展。   相似文献   

14.
Debonding of the core from the face sheets is a critical failure mode in sandwich structures. This paper presents an experimental study on face/core debond fracture of foam core sandwich specimens under a wide range of mixed mode loading conditions. Sandwich beams with E‐glass fibre face sheets and PVC H45, H100 and H250 foam core materials were evaluated. A methodology to perform precracking on fracture specimens in order to achieve a sharp and representative crack front is outlined. The mixed mode loading was controlled in the mixed mode bending (MMB) test rig by changing the loading application point (lever arm distance). Finite element analysis was performed to determine the mode‐mixity at the crack tip. The results showed that the face/core interface fracture toughness increased with increased mode II loading. Post failure analysis of the fractured specimens revealed that the crack path depends on the mode‐mixity at the crack tip, face sheet properties and core density.  相似文献   

15.
提出了一种齿板-玻璃纤维混合面板和泡沫芯材组成的新型混合夹层结构,齿板通过齿钉与泡沫芯材相连。该结构采用真空导入成型工艺制备,通过三点弯曲试验研究该结构在不同跨度以及不同芯材密度情况下的破坏模式和弯曲性能,并与普通泡沫夹层结构进行对比分析,同时探究了齿板对该结构界面性能的影响。结果表明:在泡沫芯材密度为35kg/m~3、80kg/m~3和150kg/m~3情况下,齿板-玻璃纤维混合泡沫夹层梁弯曲承载能力与普通泡沫夹层梁相比分别提高了168%、211%和258%,其界面剪切强度依次为0.09 MPa、0.21 MPa和0.45 MPa;随着芯材密度和跨度的变化,该结构主要产生芯材剪切和芯材凹陷两种破坏形态,齿板的嵌入有效抑制界面的剪切失效。另外,利用理论公式估算了试件受弯极限承载能力,理论值与实测值吻合较好。  相似文献   

16.
利用磁控溅射法在单硅晶基底和玻璃基底上沉积铁氧体薄膜,采用AFM观察薄膜的微观形貌,采用划痕法测试薄膜的界面结合强度,测试结果表明:由于两种不同材质上沉积的薄膜粗糙度缘故,硅晶/铁氧体薄膜的临界载荷为19.7N,其划痕形貌为裂纹状扩展,玻璃/铁氧体薄膜的临界载荷为5.3N,其划痕形貌为剥落状。  相似文献   

17.
Lately, the use of fibre reinforced thermoplastics (FRTP) has increased due to its increased mouldability compared to thermosetting FRP material.

FRTP includes stampable sheet, short and long fibre reinforced thermoplastic pellets, continuous fibre reinforced thermoplastics sheets, etc. The long fibre reinforced thermoplastic (LFRTP) pellet has better mechanical properties than short fibre reinforced pellets and better mouldability than stampable sheet. At present, injection moulding method is mainly used for moulding LFRTP pellets because of its high productivity.

However, the long fibre of LFRTP pellets, whose length is the same as pellet length, is degraded during processing if conventional injection moulding machines are used, and as a result, the mechanical properties are not improved as expected in many cases. Therefore, a new moulding process is required to make good use of LFRTP pellets.

For this study, a transfer moulding apparatus was designed and built to minimize fibre degradation of the moulded parts.

Firstly, the LFRTP pellets with fibre lengths of 3, 6, 9, 12.7 and 17 mm were prepared in order to clarify the difference of mechanical properties due to fibre length. The fibre ratio was 30% in weight for all cases and the same polypropylene was used. They were moulded to the shape of the test specimens. Tensile, bending and Izod impact strengths were measured by using these test specimens. Secondly, LFRTP pellets were moulded to the shape of test specimens by the transfer moulding apparatus and conventional injection moulding machine, and then mechanical properties were measured. At the same time, short fibre pellets were moulded to the smae shape of test specimens by the injection moulding machine, and mechanical properties were compared with those of LFRTP pellets.

With the long glass fibre reinforced polypropylene, good results of fibre preservation and mechanical properties were obtained by the transfer moulding apparatus which was built for this study. The impact strength was increased remarkably as the fibre length increased, and consequently the preservation of fibre length in the moulded parts was especially effective in improving the impact strength.  相似文献   


18.
长余辉光致发光玻璃的制备及其性能研究   总被引:13,自引:0,他引:13  
利用陶瓷制备方法合成了SrAl2O4:Eu,Dy长余辉发光粉体,该磷光体主发射波长位于520nm,余辉时间长达8h以上,并以硼硅酸盐低熔点玻璃为底材,掺杂该发光粉体,在一定温度下烧成,制得长余辉发光玻璃。  相似文献   

19.
The fracture toughness K1c and the effective fracture surface energy γeff, of oxynitride glass (m)/SiC(p) brittle particulate composites were measured by means of stable fracture tests, using chevron-notch three-point bend specimens. In comparison to oxide glasses, the oxynitride glass matrix is noticeably tougher: K1cm = 1.2 MPa. and γeff = 5 J/m2. The addition of SiC particles, 6 μm in diameter, results in a significant toughening: K1c = 2.5 MPa. and γeff = 9.1 J/m2 for the composite with 40 vol\% SiC. In such systems, with strong particle-matrix interfacial bonding, and where (Ep, K1cp, σrp) > (Em, K1cm, σrm), the main toughening contribution is due to a discrete pinning of the crack by particles near the crack tip in conjunction to bowing of the crack front between particles, and to a small scale bridging mechanism. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
采用酚醛树脂作为炭纤维表面处理剂, 可以显著提高多种炭纤维和环氧树脂界面强度。通过XPS、AFM、SEM和层间剪切强度等方法, 研究了不同浓度的酚醛树脂表面处理剂对炭纤维增强环氧树脂复合材料层间剪切强度、炭纤维表面元素和化学键组成的影响, 以及炭纤维增强环氧树脂复合材料断面微观形貌的变化。XPS和AFM分析结果表明酚醛树脂和炭纤维表面发生了化学反应, 而且酚醛树脂处理剂浓度越高, 和炭纤维表面发生反应的基团也越多, 表面越光滑平整, SEM和层间剪切强度研究表明酚醛树脂处理后的复合材料界面粘结性能得到很大的改善, 而且界面粘结性能强烈依靠处理剂浓度。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号