共查询到20条相似文献,搜索用时 15 毫秒
1.
A. Hachemi 《国际能源研究杂志》1999,23(8):675-682
The thermal heat performance of a solar air collector depends strongly on the thermal heat loss and the efficiency factor. In order to increase these performances, it is necessary to use a solar air collector which is well insulated and where the fluid flow is fully developed turbulent flow. It needs a high heat transfer between the absorber plate and the fluid to decrease the absorber‐plate temperature and hence the heat loss by radiation from the absorber to the ambient. This increases the efficiency factor. In the present paper, the heat loss and efficiency factor are treated for solar air collectors with selective and nonselective absorber plate. It is shown that the selectivity of the absorber plate cannot play an important role in a well‐insulated solar collector with a fanned system which permits a fully developed turbulent flow and, in consequence, high heat transfer. Copyright © 1999 John Wiley & Sons, Ltd. 相似文献
2.
3.
4.
In this paper we have developed a simple analytical model to investigate the effect of increased heat transfer area on a conventional type air heater. This has been done by incorporating rectangular fins, or by vee-corrugating the absorber plate of a conventional type air heater. However, the heat transfer coefficient has been assumed to be constant, in our present analysis. Performance curves are found for different collector configurations, and a marked increase in efficiencency is noticed with the increase in number of fins. The fliud temperature is also found to increase with the addition of fins, the effect being more at lower flow rates. The effect of vee-corrugating was found to be less promising than addition of fins. 相似文献
5.
6.
Experimental study of heat transfer in oscillating flow 总被引:2,自引:0,他引:2
Pascale Bouvier Jean-Pierre Bardon 《International Journal of Heat and Mass Transfer》2005,48(12):2473-2482
This paper describes an experimental study of heat transfer in oscillating flow inside a cylindrical tube. Profiles of temperature are taken inside the wall and in the fluid from an instrumented test rig, in different conditions of oscillating flow. Profiles obtained allow the observation of the wall effect on heat transfer. A method using the inverse heat conduction principle allows the characterization of local heat transfers at the fluid-solid interface. Finally, a comparison between global and local approaches of heat transfer shows the difficulty of defining a dimensionless heat flux density to model local heat transfer in oscillating flow. 相似文献
7.
V. Kongkaitpaiboon K. NananS. Eiamsa-ard 《International Communications in Heat and Mass Transfer》2010
Perforated conical-ring (PCR) is one of the turbulence-promoter/turbulator devices for enhancing the heat transfer rate in a heat exchanger system. In the present paper, the influences of the PCR on the turbulent convective heat transfer (Nu), friction factor (f) and thermal performance factor (η) characteristics have been investigated experimentally. The perforated conical-rings (PCRs) used are of three different pitch ratios (PR = p/D = 4, 6 and 12) and three different numbers of perforated holes (N = 4, 6 and 8 holes). The experiment conducted in the range of Reynolds number between 4000 and 20,000, under uniform wall heat flux condition and using air as the testing fluid. The experimental results obtained by using the plain tube and the tube equipped with the typical conical-ring (CR) are also reported for comparison. It is found that the PCR considerably diminishes the development of thermal boundary layer, leading to the heat transfer rate up to about 137% over that in the plain tube. Evidently, the PCRs can enhance heat transfer more efficient than the typical CR on the basis of thermal performance factor of around 0.92 at the same pumping power. Over the range investigated, the maximum thermal performance factor of around 0.92 is found at PR = 4 and N = 8 holes with Reynolds number of 4000. 相似文献
8.
An experimental study of flow friction and heat transfer in wavy microchannels with rectangular cross section 总被引:1,自引:0,他引:1
Experimental investigation has been conducted on the flow friction and heat transfer in sinusoidal microchannels with rectangular cross sections. The microchannels considered consist of ten identical wavy units with average width of about 205 μm, depth of 404 μm, wavelength of 2.5 mm and wavy amplitude of 0–259 μm. Each test piece is made of copper and contains 60–62 wavy microchannels in parallel. Deionized water is employed as the working fluid and the Reynolds numbers considered range from about 300 to 800. The experimental results, mainly the overall Nusselt number and friction factor, for wavy microchannels are compared with those of straight baseline channels with the same cross section and footprint length. It is found that the heat transfer performance of the present wavy microchannels is much better than that of straight baseline microchannels; at the same time the pressure drop penalty of the present wavy microchannels can be much smaller than the heat transfer enhancement. Conjugate simulation based on the classical continuum approach is also carried out for similar experimental conditions, the numerical results agree reasonably well with experimental data. 相似文献
9.
This paper focuses on the experimental study on friction factor and the numerical simulation on the periodic fully developed fluid flow and heat transfer in an alternating elliptical axis tube (AEAT). The experimental results show that in the laminar flow regime fRe = 84.7, and the transition from laminar to turbulent flow occurs at an earlier Reynolds number about 1000. The predicted cycle average Nusselt numbers from the standard k–ε model and RNG k–ε model are quite close to each other, which are appreciably higher than that of elliptic tube and round tube. Heat transfer performance comparisons are made under identical pumping power constraint, showing the obvious superiority of AEAT over a round tubes. In addition, the complicated multi-longitudinal vortex structure of the flow is detected in detail from the numerical simulation results, which improves the synergy between velocity field and temperature gradient in a large extent, hence, greatly enhancing the convective heat transfer. 相似文献
10.
11.
Heat transfer and friction factor correlations for a duct having dimple-shape artificial roughness for solar air heaters 总被引:1,自引:0,他引:1
The heat transfer coefficient between the absorber plate and air can be considerably increased by using artificial roughness on the underside of the absorber plate of a solar air heater duct. Under the present work, an experimental study has been carried out to investigate the effect of roughness and operating parameters on heat transfer and friction factor in a roughened duct provided with dimple-shape roughness geometry. The investigation has covered the range of Reynolds number (Re) from 2000 to 12,000, relative roughness height (e/D) from 0.018 to 0.037 and relative pitch (p/e) from 8 to 12. Based on the experimental data, values of Nusselt number (Nu) and friction factor (fr) have been determined for different values of roughness and operating parameters. In order to determine the enhancement in heat transfer and increment in friction factor values of Nusselt number and friction factor have been compared with those of smooth duct under similar flow conditions. Correlations for Nusselt number and friction factor have been developed for solar air heater duct provided such artificial roughness geometry. 相似文献
12.
13.
A detailed theoretical parametric analysis of a corrugated solar air heater with and without cover has been presented. The optimum flow channel depth, at which the maximum heat is available at the lowest collector cost, has been obtained. The effect of collector parameters and operating conditions is also seen on the collector performance. 相似文献
14.
Local heat transfer and skin friction around the tube perimeter of coils were studied in airflow. The heat transfer experiments were performed with two different coils D/d = 23 and 15.6, and skin friction experiments were performed with three different coils D/d = 25, 13.3 and 6.67 In the wide range of Re number from 4×103 till 105 . Variation of the local heat transfer around the perimeter and along the tube was defined. The behavior of the shear stresses at the wall and of the flow modes were studied. Investigations of the heat transfer indicated that with the increase of D/d the difference between heat transfer in the initial thermal section and the stabilized heat transfer increases. Investigations of the shear stress and its fluctuations indicated that, in large-curvature coils, the transition from laminar-vortex flow to turbulent flow around the tube perimeter takes place at different values of Re. In the region of the external generatrix of the bend, the transition occurs at smaller Re, whereas a 相似文献
15.
Characteristics of heat transfer and flow resistance of the latticework (vortex) cooling channel with ribs truncated at their two ends were theoretically and experimentally studied compared with regular and smooth channels of the same configuration. The results showed: the heat transfer efficiency of the latticework channel with two slots was better than those of regular and smooth channels of the same configuration, its flow resistance situation in the slotted channel becomes quite complex; The flow resistances of 2 mm- and 4 mm-slotted channels were obviously lower than that of the regular channel, but they are still much higher than that of the smooth channel; Compared with the regular channel, the total heat transfer efficiencies of the slotted channels were pretty improved, among them the 4-mm slotted channel has the biggest enhancement. From the experimental results, it is obvious that the latticework channel with proper slots has a great prospect in the design of the inner cooling channels of turbine blades. 相似文献
16.
An experimental and numerical investigation has been undertaken to study the heat transfer process in horizontal mantle heat exchangers used in solar water heaters. A rectangular cavity has been used as a simplified geometry. With the aid of particle image velocimetry (PIV) the flow field in the centre‐plane of the rectangular cavity has been visualized. Three‐dimensional flow simulations were performed using a commercial CFD package. The impinging jet formed by the inlet flow directed towards the opposite wall was found to produce localised turbulence in the cavity, with an inlet Reynolds number as low as 360. This turbulence was found to effect the flow field and heat transfer in the cavity when the inlet Reynolds number was above 1200. It is shown that, with the boundary conditions used in this study, most of the heat transferred was in the bottom half of the cavity. This is not the ideal situation for optimization of solar water heating systems. Copyright © 1999 John Wiley & Sons, Ltd. 相似文献
17.
Four basic types of natural convection solar air heaters, in many geometries, were tested in a wide range of input solar energy values. Measured values of air flow rate, temperature increase and efficiency are reported. It is expected that the results and conclusions will be valuable in the design of equipment for drying, space heating and other purposes. 相似文献
18.
S. Seghir-Ouali D. Saury S. Harmand O. Phillipart D. Laloy 《International Journal of Thermal Sciences》2006,45(12):1166-1178
This article presents an experimental identification technique for the convective heat transfer coefficient inside a rotating cylinder with an axial airflow. The method consists in heating the outer face of the cylinder using infrared lamps, and acquiring the evolution of the external surface temperature versus time using an infrared camera. Heat transfer coefficients are identified via three methods. The first one is based on an inverse model, the second one assumes the wall of the cylinder as a thermally thin wall and the third one is based on an analytical method permitting to obtain the temperature field within the whole cylinder. The experiments were carried out for a rotational speed ranging from 4 to 880 rpm corresponding to rotational Reynolds numbers varying from 1.6×103 to 4.7×105 and an air flow rate varying from 0 to which corresponds to an axial Reynolds numbers ranging from 0 to 3×104. Correlations connecting the Nusselt number to the axial and rotational Reynolds numbers are also proposed. 相似文献
19.
20.
针对真空管与水箱连接处出现随机涡流,不利于换热的问题,建立了真空管内加装导流板结构模型,运用Ansys Fluent软件对加装不同长度、厚度导流板结构的热水器进行三维数值模拟研究。导流板的存在减小了管内及连接处冷热流体的混合,使速度场均匀,流动稳定无扰动,保证了冷热流体的有序流动;特别是在真空管的下半部分,流体由水箱流入真空管处的速度提高,且流动稳定无涡流;加装不同长度导流板后,真空管底部、中部以及接近水箱入口处的水流平均速度提高了20%~313%,大大地增加了真空管下半部,特别是底部的热交换效率。 相似文献