首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glasses of various compositions in the system (100 − x)(Li2B4O7) − x(SrO–Bi2O3–0.7Nb2O5–0.3V2O5) (10  x  60, in molar ratio) were prepared by splat quenching technique. The glassy nature of the as-quenched samples was established by differential thermal analyses (DTA). The amorphous nature of the as-quenched glasses and crystallinity of glass nanocrystal composites were confirmed by X-ray powder diffraction studies. Glass composites comprising strontium bismuth niobate doped with vanadium (SrBi2(Nb0.7V0.3)2O9−δ (SBVN)) nanocrystallites were obtained by controlled heat-treatment of the as-quenched glasses at 783 K for 6 h. High resolution transmission electron microscopy (HRTEM) of the glass nanocrystal composites (heat-treated at 783 K/6 h) confirm the presence of rod shaped crystallites of SBVN embedded in Li2B4O7 glass matrix. The optical transmission spectra of these glasses and glass nanocrystal composites of various compositions were recorded in the wavelength range 190–900 nm. Various optical parameters such as optical band gap (Eopt), Urbach energy (ΔE), refractive index (n), optical dielectric constant and ratio of carrier concentration to the effective mass (N/m*) were determined. The effects of composition of the glasses and glass nanocrystal composites on these parameters were studied.  相似文献   

2.
将TiNb2O7的前驱体在不同温度(400℃、800℃、900℃、1000℃和1100℃)煅烧,用固相合成法制备TiNb2O7负极材料并对其样品进行了TG-DSC、XRD和SEM表征和电化学性能测试。结果表明:在900℃煅烧前驱体,锐钛矿与Nb2O5反应的主要产物为Ti2Nb10O29。Ti2Nb10O29与金红石反应生成了TiNb2O7,生成纯单斜相TiNb2O7的最佳条件为在1100℃煅烧6 h。TiNb2O7负极材料在0.2C电流密度时初始容量为278.4 mAh/g,初始库伦效率为82.9%。TiNb2O7具有良好的倍率容量,在1C循环100次后容量保持率为89%。  相似文献   

3.
The electric properties of (Sn, Ti)O2 doped with 1.00 mol% CoO, 0.05 mol% Nb2O5 and x mol% La2O3 (0.25≤x≤1.00) have been studied. Sn0.25Ti0.75Co0.01Nb0.005 doped with 0.50 mol% La2O3 has a nonlinearity coefficient of 6. An increase in the concentration of La2O3 raised its resistivity, thereby altering the electric properties of the material. A thermal treatment in oxygen atmosphere increased the nonlinearity coefficient to a value of 9.  相似文献   

4.
Line-focus acoustic microscopy has been used to measure the phase velocities of surface acoustic waves on bare MgO and bare LaAlO3 , and on Nb2O5/MgO and BaTiO3/LaAlO3 thin-film/substrate configurations. The thin films are polycrystalline materials. The substrates are anisotropic single-crystals. The measured angular variation of the surface acoustic wave velocities has been used to determine the elastic constants of MgO substrate and Nb2O5 thin-film. It has been assumed that the Nb2O5 films may be considered as essentially isotropic. The measurements for LaAlO3 and BaTiO3/LaAlO3 show anomalies which are attributed to twinning in the LaAlO3 substrate  相似文献   

5.
The influence of dopants commonly used in SnO2 varistor ceramics, such as CoO, Cr2O3 or Nb2O5, on the structural properties of SnO2 was investigated. Several SnO2-based ceramics containing only one of the dopants were prepared and characterized. Spectroscopic investigations [visible, near infrared (IR) and IR region] were performed to obtain information about dopants valence states inside the ceramics, as well as about their influence on electronic structure of the material. Structural properties were investigated by X-ray diffraction analysis and mechanisms of dopant incorporation were proposed. Obtained results were confirmed with results of the electrical measurements. Microstructural changes in doped ceramics were investigated by scanning electron microscopy (SEM) analysis that showed great differences in densities, grain size, and morphology of the SnO2 ceramics depending on type of dopants and their distribution.  相似文献   

6.
嵌入型过渡金属氧化物因具有安全的工作电压、高比容量和快速的嵌锂能力而受到广泛关注.但低本征电导率特性严重影响其作为锂电负极材料的寿命和性能.本文通过简便易行、可规模化放大的二氧化碳热处理方法构筑了具有新型嵌覆型碳结构的Nb2O5/C纳米杂化材料.在控制碳含量的前提下,实现了颗粒聚集体内部表面可控碳包覆.以嵌覆型碳结构的Nb2O5/C纳米杂化材料为负极组装的锂离子电池在40 mA g(-1)电流密度下容量可达387 mA hg(-1),而在200 mA g(-1)电流密度下循环500次后,容量保持率在92%以上.采用电化学滴定、差分电化学质谱(DEMS)等方法对嵌覆型五氧化二铌/碳纳米杂化材料脱嵌锂动力学过程以及产气行为进行了研究.本文提出的嵌覆型碳结构有望为高性能嵌入型过渡金属氧化物的结构设计提供参考.  相似文献   

7.
Transparent glasses in the system (100−x)Li2B4O7x(SrO---Bi2O3---Nb2O5) (10≤x≤60) (in molar ratio) were fabricated by a conventional melt-quenching technique. Amorphous and glassy characteristics of the as-quenched samples were established via X-ray powder diffraction (XRD) and differential thermal analyses (DTA) respectively. Glass–ceramics embedded with strontium bismuth niobate, SrBi2Nb2O9 (SBN) nanocrystals were produced by heat-treating the as-quenched glasses at temperatures higher than 500 °C. Perovskite SBN phase formation through an intermediate fluorite phase in the glass matrix was confirmed by XRD and transmission electron microscopy (TEM). Infrared and Raman spectroscopic studies corroborate the observation of fluorite phase formation. The dielectric constant (r) and the loss factor (D) for the lithium borate, Li2B4O7 (LBO) glass comprising randomly oriented SBN nanocrystals were determined and compared with those predicted based on the various dielectric mixture rule formalism. The dielectric constant was found to increase with increasing SBN content in LBO glass matrix.  相似文献   

8.
β-Si3N4 whiskers with diameter of 0.5–2 μm and aspect ratio of 10–15 have been successfully prepared by combustion synthesis under 30–50 atm nitrogen pressure. The addition of MgSiN2 powder plays a significant role in the growth of β-Si3N4 whiskers. The as-prepared products were characterized by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM).  相似文献   

9.
LiAl0.23Mn1.77O4 was synthesized by high temperature solid-state reaction. The structure and morphology of LiAl0.23Mn1.77O4 were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDS). The supercapacitive performances of LiAl0.23Mn1.77O4 materials were studied using galvanostatic charge/discharge measurements, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) methods in 2 mol L−1 (NH4)2SO4 solution. The results show that the LiAl0.23Mn1.77O4 electrode exhibits typical supercapacitive characteristics in aqueous (NH4)2SO4 electrolyte. The specific capacitance is up to 185 F g−1 at current density of 2 mA cm−2. The ohmic resistance (Rsol) is only 0.22 Ω. Besides, the electrodes showed a stable cycle life in the potential range of 0–1.0 V and retained 93% of initial specific capacitance over 100 cycles.  相似文献   

10.
Pure and Mn-doped SrNb2O6 nanoparticles have been prepared by sol–gel combustion method using citric acid as fuel and complexing agent and nitrates as oxidants at a relatively low temperature compared to solid-state reaction method. X-ray diffraction (XRD) patterns of the pure SrNb2O6 samples show that the SrNb2O6 nanoparticles exhibited orthorhombic phase. Photoluminescence (PL) properties of all the undoped and Mn-doped samples were studied in detail. For the pure SrNb2O6 samples, a strong blue emission band centered at 442 nm and two weak emission bands centered at 524 nm and 626 nm, respectively, can be observed. For the Mn-doped SrNb2O6 samples, no emission from Mn2+ was observed while the blue emission intensity of SrNb2O6 varied with the Mn-doping concentration. This novel PL characteristic of the doped samples was explained.  相似文献   

11.
A modified microwave-assisted polyol method was applied to prepare nanoparticulate ceramic powders of different oxides, i.e. Gd2O3, AlO(OH) (boehmite) and TiO2. Due to the good dielectric properties of the utilised solvents, such as ethylene glycol, diethylene glycol and 1,4 butanediol, a significant decrease in reaction time was achieved under microwave heating. In the case of AlO(OH) and Gd2O3, <5 nm primary particle size were obtained. Boehmite was found to be intercalated with the solvent. The general applicability of the process is shown and the advantages in terms of properties and processibility are described. The powders thus prepared were investigated using X-ray diffractometry, electron microscopy and physisorption.  相似文献   

12.
Amorphous Fe2O3 nanoparticles of about 3–5 nm in size have been synthesized by microwave irradiation heating of an aqueous solution, containing ferric chloride, polyethylene glycol-2000 and urea. The Fe2O3 nanoparticles were characterized by the techniques of TEM, XRD, DSC, TGA and magnetization measurements.  相似文献   

13.
Synthesis and single crystal structure are reported for a new gadolinium acid diphosphate tetrahydrate HGdP2O7·4H2O. This salt crystallizes in the monoclinic system, space group P21/n, with the following unit-cell parameters: a = 6.6137(2) Å, b = 11.4954(4) Å, c = 11.377(4) Å, β = 87.53(2)° and Z = 4. Its crystal structure was refined to R = 0.0333 using 1783 reflections. The corresponding atomic arrangement can be described as an alternation of corrugated layers of monohydrogendiphosphate groups and GdO8 polyhedra parallel to the () plane. The cohesion between the different diphosphoric groups is provided by strong hydrogen bonding involving the W4 water molecule.

IR and Raman spectra of HGdP2O7·4H2O confirm the existence of the characteristic bands of diphosphate group in 980–700 cm−1 area. The IR spectrum reveals also the characteristic bands of water molecules vibration (3600–3230 cm−1) and acidic hydrogen ones (2340 cm−1). TG and DTA investigations show that the dehydration of this salt occurs between 79 and 900 °C. It decomposes after dehydration into an amorphous phase. Gadolinium diphosphate Gd4(P2O7)3 was obtained by heating HGdP2O7·4H2O in a static air furnace at 850 °C for 48 h.  相似文献   


14.
The nanometer-size In2O3 was synthesized via a reverse microemulsion. A new catalytic combustion-type In2O3-based H2 gas sensor was developed based on the technology for fabricating the direct-heating-type sensor and a surface-modifying process. A dense SiO2 layer near the surface of the sensor was formed by chemical vapor deposition (CVD) of hexamethyldisiloxane (HMDS). The SiO2 layer, which acted as a molecular sieve, reduced the penetration of large molecular, such as C2H5OH, CH4, i-C4H10, into the sensing layer, resulting in the improvement of selectivity to H2. The sensitive properties and the working mechanism of the sensor were presented. The In2O3 nanoparticles prepared by microemulsion were characterized by transmission electron microscopy and X-ray diffraction.  相似文献   

15.
Textured SrBi2Ta2O9 (SBT) ceramics were fabricated via templated grain growth (TGG) technique using platelet-like SBT single crystal templates. The templates (5 wt%) were embedded in a fine-grain SBT powder matrix containing 3 wt% of Bi2O3 excess that were subjected to uniaxial pressing and sintering at 1000–1250 °C for up to 24 h. Microstructural characterization by SEM was performed to establish the effect of sintering parameters on the grain growth and texture development. It was found that the ceramics developed a bimodal microstructure with notable concentration of large (longer than 90 μm) aligned grains with c-axis oriented parallel to the pressing direction. The mechanism controlling the texture development and grain growth in SBT ceramics is discussed.  相似文献   

16.
由于纳米尺度的尖晶石结构金属氧化物独特的晶体结构和能带结构,使其具有广阔的应用前景。采用水热法合成了MnFe2O4复合还原氧化石墨烯(MnFe2O4/rGO)纳米复合材料,采用XRD、高分辨透射电子显微镜(HRTEM)、能量色散X射线光谱仪(EDX)、FTIR、XPS、拉曼光谱(Raman)、光致发光光谱(PL)和紫外-可见光谱漫反射(UV-vis DRS)对样品的晶体结构、形貌、元素分布、结合能和光学性能进行表征。结果表明,制备的MnFe2O/rGO复合材料为立方尖晶石结构,形貌呈不规则的椭球形,颗粒大小比较均匀。rGO表面所负载的MnFe2O4纳米粒子被石墨烯部分包裹,颗粒尺寸小,分散性好。MnFe2O4/rGO复合材料的电子-空穴对的再结合效率降低,其中石墨烯具有较多缺陷,无序程度较高,含氧基团被聚乙烯吡咯烷酮(PVP)部分还原,数量大大减少。MnFe2O4/rGO复合材料的带隙小于纯MnFe2O4带隙,发生了红移现象。   相似文献   

17.
The microstructure, electrical properties, dielectric characteristics, and DC-accelerated aging behavior of the ZnO–V2O5–MnO2 system sintered were investigated for MnO2 content of 0.0–2.0 mol% by sintering at 900 °C. For all samples, the microstructure of the ZnO–V2O5–MnO2 system consisted of mainly ZnO grain and secondary phase Zn3(VO4)2. The incorporation of MnO2 to the ZnO–V2O5 system was found to restrict the abnormal grain growth of ZnO. The nonlinear properties and stability against DC-accelerated aging stress improved with the increase of MnO2 content. The ZnO–V2O5–MnO2 system added with MnO2 content of 2.0 mol% exhibited not only a high nonlinearity, in which the nonlinear coefficient is 27.2 and the leakage current density is 0.17 mA/cm2, but also a good stability, in which %ΔE1 mA = −0.6%, %Δ = −26.1%, and %Δtan δ = +22% for DC-accelerated aging stress of 0.85E1 mA/85 °C/24 h.  相似文献   

18.
The preparation, crystal structure, TG–DTA analysis and spectroscopy investigation are reported for the 2,5-dimethoxy phenyl ammonium cyclotetraphosphate dihydrate [2,5-(CH3O)2C6H3NH3]4P4O12·2H2O. This new compound is triclinic P with unit cell dimensions: a = 7.438(5) Å, b = 11.841(7) Å, c = 12.354(4) Å,  = 96.61(4)°, β = 98.35(4)°, γ = 102.60(6)°, Z = 1 and V = 1038.0(1) Å3. Its crystal structure has been determined and refined to R = 0.049, with 5128 independant reflections. The structure can be described by rows of P4O12 ring anions along the a axis; between these rows are located the organic groups, connected to them by hydrogen bonds.  相似文献   

19.
Bi2O3·B2O3 glasses doped with rare-earth oxides (RE2O3) (RE3+ = La3+, Pr3+, Sm3+, Gd3+, Er3+ and Yb3+) were prepared by the melting–quenching method. The relationships between composition and properties were demonstrated by IR, DSC, XRD and SEM analysis. The results show that the network structure resembles that of undoped Bi2O3·B2O3 glass, composing of [BO3], [BO4] and [BiO6] units. RE2O3 stabilizes the glass structure as a modifier. Transition temperature (Tg) increases linearly with cationic field strength (CFS) of RE3+. La2O3, Pr2O3, Sm2O3 and Gd2O3 are benefit to promote the formation of BiBO3 crystal. When Er2O3 and Yb2O3 are introduced, respectively, the main crystal phase changes to Bi6B10O24. Transparent surface crystallized samples are obtained by reheating at 460–540 °C for 5 h. In this case, needle like BiBO3 crystal or rare-earth-doped BiBO3 crystal (PrxBi1−xBO3 and GdxBi1−xBO3) are observed, which is promising for non-linear optical application.  相似文献   

20.
在5% H2+95% N2气氛下,还原CoFe2O4纳米粒子制备了CoFe2O4-Co3Fe7纳米粒子;以焙烧黄麻纤维得到的多孔碳纤维为碳源用水热法将CoFe2O4纳米粒子负载到多孔碳中,制备出CoFe2O4/多孔碳。使用X射线衍射仪、扫描电子显微镜、透射电子显微镜、拉曼光谱仪、同步热分析仪等手段对材料进行表征,并使用矢量网络分析仪测量了复合材料的电磁参数和微波吸收性能。结果表明,CoFe2O4-Co3Fe7纳米粒子和CoFe2O4/多孔碳的微波吸收性能明显优于CoFe2O4纳米粒子。CoFe2O4-Co3Fe7纳米粒子的有效频宽(反射损耗<-10 dB的频率宽度)可达4.8 GHz。CoFe2O4/多孔碳的有效频宽可达6 GHz,覆盖了整个Ku波段(12~18 GHz)。这些材料优异的微波吸收性能,可归因于合适的介电常数、大的介电损耗、多孔结构以及介电损耗和磁损耗的协同作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号