共查询到17条相似文献,搜索用时 78 毫秒
1.
2.
磁流变弹性体(MRE)是磁流变材料中新的一员,研究磁流变弹性体材料,其动态力学性能的探究是研究的重要组成部分,建立一套磁流变弹性体动态力学性能测试系统是需亟待解决的问题。设计了一种磁流变弹性体剪切式动态力学性能测试装置,由电磁振动台提供稳定的正弦激励,通过可调间距的钕铁硼永磁体产生可变的磁场,利用安装在测试系统中的力与加速度传感器,获取磁流变弹性体在往复剪切运动中的剪切力与加速度信号,其中加速度信号经两次数值积分获得位移数据,通过力与位移数据建立磁流变弹性体在动态剪切模式下的应力-应变关系,结合粘弹性材料理论模型,得到磁流变弹性体在剪切模式下的磁控动态力学性能参数。为研制高性能的磁流变弹性体提供了评价体系。 相似文献
3.
4.
设计了一种聚氨酯基磁流变弹性体,利用设计的磁致力学性能测试装置,对剪切状态下磁流变弹性体的磁流变效应进行了系统的测试。结果表明,相对磁流变效应随着外加磁场强度的增大而增大,随着激励振幅的增大而减小。预加载位移的大小直接决定这相对磁流变效应,过大的变形会导致相对磁流变效应急剧减小。激励频率对相对磁流变效应影响不大。 相似文献
5.
制备了聚氨酯基磁流变弹性体,并构建了一种压缩性能的实验装置,对磁流变弹性体的动态压缩性能进行了系统的研究.采用激振的方法,建立了磁流变弹性体的动态力学性能的理论模型,提出了磁流变效应的计算方法.分别研究了预压缩、激励振幅、激励频率、外加磁场对磁流变效应的影响.结果表明,磁流变弹性体的磁流变效应随着外加磁场、激励振幅的增... 相似文献
6.
磁流变弹性体(MREs)作为一种新型智能磁敏材料的一个分支,能够感应外加磁场,并做出力学响应,在汽车减震,飞机、高铁、武器等军事和民用领域有广泛的应用前景,然而MREs不良的机械性能和较低的磁流变效应制约了其工程方面的应用。从该问题出发,使用羰基铁粉(CIP)填充氯丁橡胶和顺丁橡胶,制备了氯丁橡胶基和顺丁橡胶基MREs,讨论了橡胶基体种类和使用工况(振动频率、温度等)对MREs性能的影响,以便更好进行智能控制。结果发现,氯丁橡胶基MREs比顺丁橡胶基MREs有着更好的磁流变效应。频率的增大使得氯丁橡胶基MREs硫化胶磁致模量和相对磁流变效应增大,而顺丁橡胶基MREs则相反;温度的升高降低了氯丁橡胶基MREs硫化胶的零场模量和磁致模量,但是提高了其相对磁流变效应。 相似文献
7.
采用主要成分为高粘度线性聚硅氧烷的弹性胶泥为基体,制备了羰基铁粉质量分数为20%,40%和60%的磁流变胶泥。对磁流变胶泥的流变学特性和动态力学特性进行测试,描述了磁流变胶泥的本构关系并识别其参数,分析了磁场、铁粉含量、剪切应变以及剪切频率对粘弹性能的影响。结果表明,磁流变胶泥的本构关系能用Herschel-Bulkley模型进行描述;剪切应力、刚度的磁场可控范围宽(铁粉质量分数为60%的磁流变胶泥剪切应力调节范围16~128kPa,储能模量可调范围0.52~3.28 MPa);随铁粉含量和磁场的增加,剪切应力增大、弹性增加而粘性减小;不同磁场下磁流变胶泥从线性粘弹性区向非线性粘弹性区转变的临界应变值不同,且磁场增大可拓宽线性粘弹性区的范围;在线性粘弹性区磁流变胶泥对0~80Hz频率无依赖性。 相似文献
8.
增塑剂对磁流变弹性体磁流变效应的影响 总被引:3,自引:0,他引:3
磁流变弹性体是磁流变材料的一个重要分支,它兼有磁流变材料和弹性体的优点,同时克服了磁流变液沉降、稳定性差等缺点.但目前研制出的磁流变弹性体存在磁流变效应和机械性能上的矛盾,难以在需要高强度的变刚度器件中实际应用.本文研究了磁流变弹性体基体中增塑剂对材料磁流变效应的影响.结果表明,在基体中添加增塑剂使得磁流变弹性体的相对磁流变效应有较大幅度提高,并超过了目前文献中报道的最佳水平.文中还对磁流变弹性体的机械性能进行了评估,结果发现添加增塑剂对磁流变弹性体的机械性能影响不大.这表明在制备硬性工程实用磁流变弹性体时,在基体中添加增塑剂可以在保证机械性能的同时提高材料的磁流变特性. 相似文献
9.
磁流变弹性体力学性能测量系统的建立 总被引:9,自引:2,他引:9
磁流变弹性体的性能参数很多.其中磁流变弹性体的磁控性能部分是这种材料的主要参数.然而现在国际上对磁流变弹性体的力学性能的测量缺乏标准性.不同的测试系统得到的结果差别也很大.本文建立了一套磁流变弹性体力学性能的测试系统.使用了经过改造的,可以实现力磁耦合的DMA动态测试系统和自制的动态力学性能测试系统,能够全面分析磁流变弹性体的磁致动态力学性能;改造了具备力磁耦合功能的电子拉力机,可以测试磁流变弹性体在不同磁场强度和应变率情况下的准静态模量;并建立了传统的标准橡胶测试手段,可以对磁流变弹性体的强度、硬度、抗疲劳性和回弹性等多项机械性能进行较为完整的测量.这一系列测试系统的建立,为磁流变弹性体的性能测试提供了较为全面的评估体系,为磁流变弹性体的性能突破和实用化研究打下了基础. 相似文献
10.
为改善磁流变弹性体(MRE)的阻尼性能,使用Fe-Cr-Mo合金颗粒(通过电火花方法制备得到)与硅橡胶混合制备得到了MRE样品.利用DHVTC振动测试系统测试了MRE在0~500 m T磁场范围内的动态剪切性能(激振频率为5 Hz,应变振幅为1.90%).重点研究了Fe-Cr-Mo颗粒对MRE的损耗因子的影响.结果表明,Fe-Cr-Mo合金颗粒含量达到70%时,MRE的零场损耗因子具有最大值0.24.此外,当磁场强度达到500 m T时,MRE(颗粒含量为60%)的损耗因子增加了13%.增加MRE中Fe-Cr-Mo合金颗粒含量,或者增大外磁场都会导致MRE损耗因子的提高. 相似文献
11.
蒙脱土对硅橡胶基磁流变弹性体性能的影响 总被引:1,自引:0,他引:1
考察蒙脱土对硅橡胶基磁流变弹性的动态力学特性和磁流变性能的影响,通过调节体系中蒙脱土的含量优化硅橡胶磁流变弹性体的综合性能。研究结果表明,当弹性体中蒙脱土的含量在4.6%时,硅橡胶基磁流变弹性体/蒙脱土复合材料的模量比纯弹性体的模量提高了近345%,硅橡胶磁流变弹性体的磁致模量达到1.76MPa,磁流变效应为63.7%。 相似文献
12.
Anna Boczkowska Stefan F. Awietjan Stanisław Pietrzko Krzysztof J. Kurzydłowski 《Composites Part B》2012,43(2):636-640
In this paper, urethane magnetorheological elastomers (MREs) consisting of carbonyl-iron particles in a polyurethane matrix were studied. The volume fraction of particles was equal to 11.5%. Three types of ferromagnetic particles were used, with average particle size ranging from 1 to 70 μm. The elastic (storage) modulus G′ was measured as a function of angular frequency ω and strength of magnetic field. The measured G′ values were approximated with empirical model. The highest magnetorheological effect has been found for samples with 6–9 μm carbonyl-iron powder. The highest increase in the yield stress is observed for samples with particles aligned at 30° to the magnetic field lines. It has been found that rheological properties strongly depend on the MRE microstructure, in particular on the size/shape of particles and their arrangement. By optimizing the particles size, shape and alignment, the stiffness of MREs has been increased under applied magnetic field. 相似文献
13.
碳黑对磁敏高弹体力学性能的影响 总被引:1,自引:0,他引:1
磁敏高弹体也称磁流变弹性体,是一种新型的功能材料和智能材料,其力学性能可以由外加磁场来控制。制备了不同碳黑含量的磁流变弹性体,并实验研究了其磁流变效应和热稳定性,得出了碳黑对磁流变弹性体力学性能的影响。实验结果表明,制备磁流变弹性体时,向基体中添加适量的碳黑,能够增强材料的磁流变效应、降低材料的损耗因子、提高材料的热稳定性。 相似文献
14.
Tan δ and energy dissipated during hysteresis testing of isotropic and anisotropic MREs containing silane modified iron sand particles in a natural rubber matrix were compared with existing antivibration rubbers. Tan δ was measured using dynamic mechanical analysis (DMA) over a range of frequency (0.01–130 Hz), strain amplitude (0.1–4.5%), and temperature (−100–50 °C). Energy dissipated was measured using a universal tester under cyclic tensile loading. The chosen antivibration rubbers for comparison contained different contents of carbon black filler (30, 50 and 70 phr) in a natural rubber matrix. It was found that energy absorption for comparative samples was generally higher than isotropic and anisotropic MREs over the range of frequency and strain amplitude explored, as well as in hysteresis testing and this was believed to be largely due the presence of carbon black in the formulation. Further assessment was carried out on materials that were the same as anisotropic MREs except they had additions of carbon black. The energy absorption was found higher than comparative samples with the same carbon black contents, supporting the use of iron sand to improve damping. However, trends for energy absorption at around Tg were found to reverse which is considered to be due to the segmental motion of rubber chains being by far the most significant influence on energy absorption in the glass transition zone. 相似文献
15.
Lin Chen Xing-long Gong Wan-quan Jiang Jing-jing Yao Hua-xia Deng Wei-hua Li 《Journal of Materials Science》2007,42(14):5483-5489
Magnetorheological Elastomers (MR Elastomers or MREs) are a kind of novel smart material, whose mechanical, electrical, magnetic
properties are controllable under applied magnetic fields. They have attracted increasing attentions and broad application
prospects. But conventional MREs are limited to wide applications because their MR effects and mechanical performances are
not high enough. This paper aims to optimize the fabrication method and to fabricate good natural rubber based MREs with high
modulus by investigating the influences of a variety of fabrication conditions on the MREs performances, such as matrix type,
external magnetic flux density, and temperature, plasticizer and iron particles. Among these factors, the content of iron
particles plays a most important contribution in shear modulus. When the iron particle weight fraction is 80% and the external
magnetic flux density is 1 T, the field-induced increment of shear modulus reaches 3.6 MPa, and the relative MR effect is
133%. If the iron weight fraction increases to 90%, the field-induced increment of shear modulus is 4.5 MPa. This result has
exceeded the best report in the literatures researching the MREs on the same kind of matrix. The dynamic performances of MREs
were also experimentally characterized by using a modified Dynamic Mechanical Analyzer (DMA) system. The effects of strain
amplitude and driving frequency on viscoelastic properties of MREs were analyzed. 相似文献
16.
A micromechanics-based viscoelastic constitutive model is proposed to estimate the zero-magnetic-field- and magnetic-field-dependent dynamic shear stiffness and damping behavior for magnetorheological elastomers (MREs). The effect of imperfect interfacial condition between the ferromagnetic particles and the elastomeric matrix on those properties is incorporated in the proposed model. A concept of effective volume fraction of particles is introduced to take into account the particle agglomeration in MREs. The magnetic dipole interaction is further employed to evaluate the magnetic-field-induced increase in shear stiffness of MREs. Numerical simulations are conducted and compared with experimental data to verify the proposed model. 相似文献