共查询到18条相似文献,搜索用时 62 毫秒
1.
采用原位聚合法,以异佛尔酮二异氰酸酯(IPDI)、聚己内酯二元醇(PCL)、二羟甲基丁酸(DM-BA)、甲基丙烯酸羟乙酯(HEMA)、甲基丙烯酸缩水甘油酯(GMA)、甲基丙烯酸甲酯(MMA)和丙烯酸丁酯(BA)等为主要原料制备得到了无溶剂阴离子聚氨酯-丙烯酸酯(WPUA)复合乳液,并系统地研究了n(NCO)/n(OH)(R值)、亲水扩链剂DMBA和硬单体MMA的用量对WPUA乳液及其膜性能的影响。结果表明,WPUA乳胶粒呈核-壳结构,当R=1.2,m(DMBA)=3.1%,m(MMA)=26.6%时,所得的WPUA乳液粒径较小且分布窄,平均粒径为98.98nm,乳胶膜呈现良好的物理机械性能,拉伸强度为17.02MPa,断裂伸长率为109%,吸水率低至6.9%。 相似文献
2.
采用原位聚合法,制备得到系列环氧树脂(E-44)改性的无溶剂阴离子聚氨酯/丙烯酸酯(WPUA)复合乳液。通过傅里叶红外光谱(FT-IR)、热失重分析(TGA)、耐介质性及力学性能测试讨论了E-44用量对WPUA乳液及其膜性能的影响。FTIR表明,E-44中的—OH和环氧基都参与了反应。TGA表明,E-44的加入明显改善了涂膜的热稳定性。另外当W(E-44)=7.6%时,涂膜吸水率为6.13%,吸乙醇率为49.78%,呈现良好耐介质性;且涂膜硬度可达2H,附着力达到0级,耐冲击性合格。 相似文献
3.
采用原位聚合法,合成了一系列γ-氨丙基三乙氧基硅烷(KH550)改性的无溶剂阴离子型聚氨酯/丙烯酸酯复合乳液(WPUA)。重点考察了KH550用量对WPUA乳液及涂膜性能的影响,通过红外光谱(FT-IR)、热重分析(TGA)、粒度分析仪(DLS)、原子力显微镜(AFM)、吸水率测试等对其相关性能进行了表征。结果表明,KH550反应到聚氨酯链段上且当m(KH550)=1.05%(占整个反应物总量,下同)时,WPUA乳液稳定性较好,平均粒径为104.5nm,其热稳定性也较佳,涂膜表面平坦且较规整,硬度可达2H,耐冲击性合格,附着力达到0级,吸水率低至8.57%。 相似文献
4.
采用原位聚合法,合成了一系列γ-氨丙基三乙氧基硅烷(KH550)改性的无溶剂阴离子型聚氨酯/丙烯酸酯复合乳液(WPUA)。重点考察了KH550用量对WPUA乳液及涂膜性能的影响,通过红外光谱(FT-IR)、热重分析(TGA)、粒度分析仪(DLS)、原子力显微镜(AFM)、吸水率测试等对其相关性能进行了表征。结果表明,KH550反应到聚氨酯链段上且当ω(KH550)=1.05%(占 整 个 反 应 物 总 量,下 同)时,WPUA乳液稳定性较好,平均粒径为104.5nm,其热稳定性也较佳,涂膜表面平坦且较规整,硬度可达2H,耐冲击性合格,附着力达到0级,吸水率低至8.57%。 相似文献
5.
用含氟丙烯酸酯改性水性聚氨酯,乳液共聚法获得具有核壳结构的水性PUA纳米复合乳液,详细考察了PU/PA质量比、HEA用量、DMPA用量等对乳液涂膜性能的影响;实验结果表明该乳液粒径在100nm左右,乳液涂膜具有良好的力学性能,当含氟单体含量为5%时,其表面自由能为20.8mJ·m^-2,耐水性能也得到显著提高。 相似文献
6.
7.
以原位无皂乳液聚合法,异佛尔酮二异氰酸酯(IPDI)、聚己内酯多元醇(PCL)、二羟甲基丁酸(DMBA)、丙烯酸羟乙酯(HEA)、苯乙烯(St)、丙烯酸丁酯(BA)等为主要原料,制备聚氨酯/丙烯酸酯微乳液(PUA),并研究微乳液对纸张疏水性影响。研究表明当m(DMBA)=8%,m(HEA)=4%,n(NCO)/n(OH)=1.6,m(PU)/m(PA)=1∶1时,经PUA微乳液表面处理后,纸张于水的渗透时间较空白纸样提高了73%,明显改善纸张的疏水性。采用FT-IR、TGA、SEM及动态接触角对PUA结构以及表面处理前后纸张性能变化进行了表征。FT-IR和TGA均证实丙烯酸酯组分的引入获得了聚氨酯/丙烯酸酯的复合结构,且聚合物热稳定性较PU明显提高;SEM观察证实,经PUA微乳液处理后纸纤维表面变得光滑,裂纹明显减少;动态接触角分析表明,水在纸表面所成的初始接触角达118°,且在300s内,其随时间变化较小。 相似文献
8.
9.
以三羟甲基丙烷三丙烯酸酯(TMPTA)、甲基丙烯酸甲酯(MMA)、苯乙烯(St)、丙烯酸正丁酯(BA)、2-甲基-2-丙烯酸十三烷基酯(TDMA)、硅酸乙酯(TEOS)和γ-甲基丙烯酰氧丙基三甲氧基硅烷(MPS)为反应单体,聚四氟乙烯(PTFE)分散液作种子,通过原位聚合法和种子乳液法制备出纳米SiO_2、PTFE协同改性的丙烯酸酯(SiO_2/PTFE/PA)复合乳液。利用傅里叶变换红外光谱仪、透射电子显微镜、扫描电子显微镜、热重分析仪和接触角/界面张力测量仪对复合乳液的结构与性能进行了表征和测试。结果表明:当PTFE占体系中丙烯酸酯类单体总质量16%、纳米SiO_2用量为2.4%(质量分数)时,复合乳液平均粒径为151nm,胶膜表面水接触角为112.3°,吸水率为3.8%;在热失重5%和10%条件下,纳米SiO_2/PTFE/PA胶膜热分解温度分别为347.7℃和375.5℃,相比改性丙烯酸酯胶膜热分解温度分别提高了59.6℃和27.7℃,疏水性和耐热性均有显著提高。 相似文献
10.
以异佛尔酮二异氰酸(IPDI)、聚丙二醇(PPG)、端羟丙基硅氧烷(PDMS)、二羟甲基丙酸(DMPA)及1,4-丁二醇(BDO)为主要原料,采用溶液聚合法合成有机硅改性水性聚氨酯(SiPU)。以SiPU为种子乳液,并作为复合乳液的壳层,加入核层单体丙烯酸丁酯(BA)、甲基丙烯酸甲酯(MMA)及甲基丙烯酸十二氟庚酯(DFMA),通过乳液聚合得到氟硅改性聚氨酯-聚丙烯酸酯(FSiPUA)复合乳液。考察了PDMS及DFMA用量对乳液聚合过程及乳胶膜表面疏水性能的影响。采用FT-IR、CA、TEM、DSC及TG等表征复合乳液涂膜结构与性能。结果表明,FSiPUA复合乳液呈现核壳结构,在PDMS和DFMA的协同作用下,当PDMS和DFMA用量分别为m(PDMS)/m(PU)=5.5/100和m(DFMA)/m(AA)=15/100时,涂膜的表面自由能低至21.67 mN/m,对去离子水接触角达102.3°,涂膜耐热性有一定提高。 相似文献
11.
纳米SiO_2/有机硅改性聚丙烯酸酯复合材料性能研究 总被引:1,自引:1,他引:1
采用无皂乳液聚合技术和溶胶-凝胶技术,合成了纳米SiO2/有机硅改性聚丙烯酸酯无皂乳液,采用TEM和SEM观察了乳液和膜的微观结构。纳米复合无皂乳液具有优良的耐化学稳定性,随着纳米SiO2含量增加,乳液的离心稳定性降低;纳米SiO2/有机硅改性聚丙烯酸酯杂化膜的耐溶剂性显著好于有机硅改性聚丙烯酸酯膜,且随着纳米SiO2含量增加,杂化膜的耐溶剂性增加;杂化膜的透光性能好,且具有紫外光吸收特性;杂化膜含有的SiO2粒子的尺寸100nm,且均匀分散于聚丙烯酸酯组分中。 相似文献
12.
13.
14.
选用二烯丙基二甲基氯化铵(DMDAAC)与丙烯酸丁酯(BA)、甲基丙烯酸甲酯(MMA)通过无皂乳液聚合法制备了聚二烯丙基二甲基氯化铵-丙烯酸丁酯-甲基丙烯酸甲酯(PDMDAAC-BA-MMA)乳液,采用单因素实验法分别考察了引发剂用量、反应温度和DMDAAC用量对乳液性能的影响。通过傅里叶红外光谱(FT-IR)、动态激光光散射(DLS)、透射电镜(TEM)等表征手段对PDMDAAC-BA-MMA进行了表征。FT-IR结果表明单体成功发生了聚合。DLS和TEM结果表明乳胶粒子直径大约在800nm左右,呈典型的核壳结构。将其应用于皮革涂饰工艺中,应用结果表明,与市场产品相比,自制乳液涂饰后革样的抗张强度、吸水率和干湿擦牢度相当,断裂伸长率有大幅度提高。 相似文献
15.
用红外光谱(IR)、核磁共振氢谱(1H-NMR)对氟代聚丙烯酸酯乳液主组分FBDH的结构进行了表征,然后用透射电镜(TEM)、纳米粒度仪和Zeta电位分析仪对乳液的粒径等物化指标进行了测定,并以棉织物作为应用对象,考察FBDH的应用性能。结果表明,FBDH乳液是一种平均粒径为126.2nm、Zeta电位为+21.16mV的阳离子乳液,用于棉织物的后整理,FBDH能明显改善织物的表面性能和手感。当FBDH乳液的用量为2g/100gH2O时,经其处理后的棉织物防水性可达到80分、防油等级达到6级以上。FBDH整理对棉织物的白度影响不大,但大剂量使用则会导致织物手感发硬、弯曲刚度有所增加。 相似文献
16.
以累托石、聚醚二元醇、2,2-二羟甲基丙酸、甲苯-2,4-二异氰酸酯、环氧树脂等为原料,采用原位聚合法制备了有机累托石/环氧/水性聚氨酯(OREC/EP/WPU)复合膜。用XRD、FTIR分析技术对有机累托石和复合膜的结构进行了表征,研究了有机累托石的加入量对OREC/EP/WPU的力学性能和热稳定性影响。加入有机累托石为3%(wt)时,TG-DSC分析表明OREC/EP/WPU的分解温度由286.5℃提高到318.7℃,拉伸试验数据显示拉伸强度和断裂伸长率分别提高33.3%和26.6%。扫描电镜断口形貌分析揭示,OREC/EP/WPU复合膜的断面为韧性断裂。 相似文献
17.
18.
氧化还原引发含氟丙烯酸酯乳液的合成 总被引:1,自引:0,他引:1
以甲基丙烯酸全氟辛基乙酯(PFEA)为含氟丙烯酸酯单体,磺基琥珀酸癸基聚氧乙烯(6)醚酯二钠(DNS-628)为乳化剂,采用K2 S2O8/NaHSO3氧化还原引发体系,合成了具有核壳结构的含氟丙烯酸酯共聚乳液.研究了聚合温度、DNS-628用量、K2 S2O8/NaHSO3用量及摩尔比等对聚合反应的影响,同时考察了乳胶粒大小及其分布、乳胶膜的吸水率及对水的接触角等性能.结果表明:当反应温度为60℃,K2 S2O8/NaHSO3摩尔比为1∶1、用量为0.5%,DNS-628用量为3.5%,PFEA用量为6%时,得到的乳液粒径分布窄,稳定性好,乳液成膜后对水的接触角达到了103.4°,表现出优异的疏水性能. 相似文献