首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
采用高压辊磨—粗粒湿式磁选抛尾—阶段磨矿、阶段弱磁工艺流程对钟山磁铁矿进行了选别试验。结果表明,高压辊磨产品(-3 mm)经湿式预选后可提前抛出产率50.05%、全铁品位8.33%的尾矿,入磨矿石铁品位由23.67%提高到39.18%,为降低企业生产成本提供了技术支撑;预选精矿经阶段磨矿、阶段弱磁选可获得铁品位65.13%、铁回收率61.48%、磁性铁回收率98.65%的最终铁精矿产品。  相似文献   

2.
钟山铁矿选矿工艺研究   总被引:1,自引:0,他引:1  
朱德馨 《现代矿业》2014,(3):32-34,11
采用高压辊磨—粗粒湿式磁选抛尾—阶段磨矿、阶段弱磁工艺流程对钟山磁铁矿进行了选别试验。结果表明,高压辊磨产品(-3 mm)经湿式预选后可提前抛出产率50.05%、全铁品位8.33%的尾矿,入磨矿石铁品位由23.67%提高到39.18%,为降低企业生产成本提供了技术支撑;预选精矿经阶段磨矿、阶段弱磁选可获得铁品位65.13%、铁回收率61.48%、磁性铁回收率98.65%的最终铁精矿产品。  相似文献   

3.
辽宁某开采深度为1 400 m的深部铁矿石铁品位为37.03%,铁主要以磁性铁及赤褐铁矿的形式存在,分布率分别为72.83%、22.52%,硫、磷等有害元素含量很低。为开发利用该矿石,对其进行了弱磁选-强磁选-混磁精矿反浮选工艺研究。结果表明:矿样磨细至-0.043 mm占75%后,经1段弱磁选-2段强磁选,可得到铁品位47.50%、回收率95.01%的混磁精矿;混磁精矿再磨至-0.038 mm占95%后,以淀粉为抑制剂、RS-3为捕收剂、经1粗1精2扫阳离子反浮选流程处理,可获得铁品位67.21%、回收率85.03%的精矿产品。采用磁选-反浮选流程处理该深部铁矿石获得了较为理想的选别指标,对类似复杂难选深部铁矿石选矿具有借鉴意义。  相似文献   

4.
刘文胜  韩跃新  姚强  高鹏  刘杰 《金属矿山》2022,51(2):139-145
为解决鞍千矿业有限责任公司现行阶段磨矿—粗细分级—重磁浮联合分选工艺中重选精矿品位低、波 动大,浮选尾矿品位高、选别工艺流程长等难题,以鞍千现场半自磨粗粒湿式强磁预选精矿为研究对象,开展搅拌磨 矿—弱磁—强磁—反浮选短流程工艺优化试验研究,以期实现鞍千铁矿石的高效开发与利用。 结果表明,鞍千现场 半自磨—粗粒湿式强磁预选精矿在搅拌磨磨矿细度-0. 038 mm 占 80%条件下,经磁场强度 79. 58 kA / m 弱磁选,弱磁 尾矿经背景磁感应强度 700 mT 强磁选,强磁精矿以淀粉为抑制剂、CaO 为调整剂、TD-Ⅱ为捕收剂经 1 粗 1 精 3 扫反 浮选,反浮选精矿与弱磁选精矿合并为综合精矿,综合精矿铁品位为 68. 04%、回收率为 91. 78%,综合尾矿铁品位 8. 62%。 搅拌磨矿—弱磁—强磁—反浮选短流程充分利用铁矿磁性差异进行分选,实现了鞍千铁矿石的分质分选和 脉石的梯级抛除,对于鞍山式赤铁矿石经济高效开发利用具有重要的指导意义。  相似文献   

5.
张韶敏 《现代矿业》2013,29(10):108-109
以承德地区某钒钛磁铁矿选铁尾矿为研究对象,进行了铁、钛的回收试验。结果表明,在磨矿细度为-0.074 mm占55%条件下,经过磁场强度为100 kA/m的一段弱磁选、两段磁选柱精选,可以获得TFe品位为60.33%、回收率为3.70%的铁精矿;选铁尾矿经“一段中磁预富集—中磁精矿再磨—二段中磁预富集”后得到的磁选钛精矿经过1粗2扫3精的浮选闭路试验,可以获得TiO2品位为41.02%、回收率为36.10%的钛精矿。  相似文献   

6.
朱显帮  黄新 《金属矿山》2012,41(3):66-69
选抛废粒度研究、阶段磨矿-阶段弱磁选和弱磁精反浮选脱硅试验研究。结果表明:湿式预选抛废可以显著提高入磨矿石品位、减少入磨量,采用2段磨矿、2段弱磁选不能获得铁品位和磷含量合格的铁精矿,弱磁精经1粗1精3扫反浮选脱磷,最终可获得铁品位为64.78%,铁回收率为68.01%,磷含量为0.139%的铁精矿。  相似文献   

7.
康怀斌  肖国圣 《现代矿业》2023,(9):183-186+198
某选矿厂为了回收利用选铜、锌后尾矿中的铁、硫资源,实现伴生矿产资源的综合开发利用和有价组分的梯级回收,针对选锌尾矿中的磁黄铁矿在选锌过程中被大量石灰抑制可浮性变差的问题,通过在磁场强度175 kA/m的条件下进行弱磁选,弱磁选尾矿经1粗3精1扫浮选流程得到了硫精矿1;弱磁选精矿再磨至-0.038 mm87.50%后,经1粗3精3扫流程获得硫精矿2,两者合并获得了硫品位31.15%、硫回收率81.62%的最终硫精矿;将弱磁精矿浮选后尾矿再进行弱磁选,得到了铁品位64.87%、铁回收率35.09%、含硫4.19%的铁精矿,实现了铁、硫资源的综合回收。  相似文献   

8.
为了解决柏泉铁矿"先铁后磷"生产工艺存在的流程较复杂、铁尾矿泥化较严重、脱泥作业造成磷流失,以及选磷药剂制度较复杂(需添加调整剂碳酸钠)等问题,进行了"先磷后铁、先浮后磁"工艺试验。结果表明,矿石在一段磨矿细度为-0.074 mm占40%的情况下,以BQ-2为捕收剂、水玻璃为调整剂,经1粗3精2扫闭路浮选流程选磷,获得了P_2O_5品位为31.58%、回收率为77.97%的磷精矿,浮选选磷尾矿经1次弱磁粗选抛尾—粗精矿再磨(-0.045 mm占84%)—2次弱磁精选流程选铁,获得了Fe品位为66.21%、回收率为47.03%的铁精矿。新工艺在取得理想选矿指标的同时,避免了选磷给矿的过磨和泥化问题,省去了磁选尾矿浓缩、脱泥作业,取消了碳酸钠的使用。  相似文献   

9.
针对海南某铁矿山不断开采、矿石品质下降的问题,提出采用铁矿石分质分选的新思路,开展了弱磁选富集磁铁矿、反浮选回收赤铁矿的工艺流程试验。结果表明:原矿经过磨矿(-0.074mm占54.21%)—一段弱磁选(79.58k A/m)—弱磁精矿再磨(-0.045mm占63.82%)—二段弱磁选(79.58k A/m)获得铁品位62.42%、回收率19.28%的弱磁精矿,对一段弱磁尾矿经强磁选获得的强磁精矿与二段弱磁尾矿合并为混磁精矿,混磁精矿再磨至-0.045mm占85.52%,以淀粉为抑制剂、Ca Cl2为调整剂、Ts-2为捕收剂,经1粗1精3扫闭路反浮选,获得铁品位60.60%、回收率36.23%的浮选精矿。弱磁精矿和浮选精矿中铁矿物分别主要以磁铁矿和赤铁矿形式存在,主要脉石矿物皆为石英。  相似文献   

10.
沈斌  王荣林  陆虎  冯建  杨松付  陈辛 《现代矿业》2022,(11):154-157+173
马钢姑山矿白象山选矿厂为降低尾矿品位,提高金属回收率,开展了30~0 mm原矿粗粒干式抛尾及细粒级磁铁矿高效磁选试验研究。试验结果表明:对30~0 mm原矿用磁滑轮1次磁选或1粗1扫干选,当2种流程抛废量接近时,相较于1次磁选,1粗1扫流程中抛出的尾矿铁品位低0.33个百分点,磁性铁含量低0.26个百分点,1粗1扫抛废效果明显优于1次磁选;一段高效磁选与弱磁选相比,高效磁选精矿铁矿品位提高0.71个百分点,磁性铁品位提高1.00个百分点,磁性铁回收率提高0.70个百分点,尾矿中磁性铁品位降低1.60个百分点;二段高效磁选与弱磁选相比,高效磁选精矿铁矿品位提高1.10个百分点、磁性铁回收率提高0.11个百分点,尾矿中磁性铁含量降低0.85个百分点;高效磁选的选别指标明显优于普通磁选机。  相似文献   

11.
东鞍山烧结厂浮选尾矿TFe品位为22.82%,FeO含量为9.87%,SiO2的含量为51.24%,S和P含量较低,均为0.03%,属于低硫、低磷、高硅型铁尾矿。此外,该尾矿-0.038 mm粒级含量高达56.44%,同时铁矿物主要集中在该粒级中,铁分布率达到67.62%。为了实现该铁尾矿的高效回收利用,本试验采用搅拌磨磨矿—弱磁选—强磁粗选—强磁精选—反浮选流程开展了系统的试验研究。结果表明:在搅拌磨磨矿细度为?0.038 mm占95%、弱磁选磁感应强度95 kA/m、强磁粗选磁场磁感应强度796 kA/m、强磁精选磁场磁感应强度398 kA/m的条件下,可获得TFe品位为38.20%、TFe回收率为63.51%的混合磁选精矿指标;将混合磁选精矿在矿浆温度40 ℃、矿浆pH值为11.5、淀粉用量1000 g/t、CaO用量900 g/t、粗选捕收剂TD-2用量600 g/t、一次精选捕收剂TD-2用量为300 g/t、二次精选捕收剂TD-2用量为300 g/t的条件下进行反浮选,闭路试验可获得TFe品位为62.34%、TFe作业回收率为55.10%的浮选精矿。全流程TFe回收率为35.00%,综合尾矿TFe品位为17.01%。试验结果可为东鞍山浮选尾矿中的铁矿物高效选矿回收提供指导。   相似文献   

12.
某铁矿石中铁以磁铁矿为主,含部分黄铁矿、磁黄铁矿等铁矿物。磁黄铁矿和黄铁矿的存在,致使在采用直接磁选时,铁精矿含硫较高。针对矿石中的磁铁矿物和含硫矿物的特性特点,进行了详细的多方案试验研究。研究结果表明,原矿粗磨磁选抛尾-磁粗精矿再磨浮选脱硫-浮硫尾矿磁精选联合流程以及磁滑轮抛尾-磁粗精矿再磨浮选脱硫-浮硫尾矿磁精选联合流程均适合处理该铁矿,矿山可通过经济计算确定最佳的提质降杂方案。该技术为同类型磁铁矿山脱硫也提供了技术支持。  相似文献   

13.
矾山磷矿尾矿回收铁试验研究   总被引:2,自引:0,他引:2  
介绍了矾山磷矿磁选尾矿的矿物组成、铁的赋存状态、矿物嵌布特征以及用重选、重磁联合流程、磁选分别对其进行回收铁的试验研究情况。用磁选法粗选并进行粗精矿再磨再选,可获得含铁64.19%、回收率5.63%的铁精矿。  相似文献   

14.
介绍了MD-30系列浮选药剂的合成工艺条件和产品质量标准.经实验室试验证明,该浮选药剂生产工艺较简单,可操作性强,产品质量稳定,浮选性能优异,且无毒,无污染,耐温性较好.在尾矿磁选粗精矿铁品位60.22%、磨矿细度-0.076 mm占90%的条件下,获得了最终铁精矿品位66.36%、产率85.84%、回收率94.59%的铁精矿.按细筛-磨矿-中磁-反浮选流程建设的选矿厂已生产3年,取得了显著的经济效益.  相似文献   

15.
首先对包钢选矿厂磁选铁精矿反浮选尾矿进行了弱磁选选铁磨矿细度试验和浮稀土粗选药剂用量试验,然后对试样进行了全流程试验。试验结果表明,采用3段阶段磨矿-弱磁选选铁、1粗3精浮选选稀土、第3段精选稀土的尾矿返回精选2流程处理现场反浮选尾矿,最终获得了REO品位为58.12%、REO回收率为64.74%、含铁5.70%的稀土精矿和铁品位为64.47%、铁回收率为56.51%、稀土REO品位为1.65%的铁精矿。  相似文献   

16.
四川某铁尾矿中铁和硫的综合回收选矿试验   总被引:2,自引:2,他引:0  
四川某铁矿磁选尾矿中含有一定量的铁矿物和硫矿物可以综合回收。根据该尾矿的矿石性质,采用筛分分级--0.5 mm重选预富集-重选粗精矿浮选选硫-浮选尾矿磁选选铁的工艺流程进行选矿试验,获得了硫精矿、强磁性铁精矿和弱磁性铁精矿3种产品。硫精矿硫品位和硫回收率分别为39.66%和82.54%,强磁性铁精矿铁品位和铁回收率分别为62.28%和32.59%%,弱磁性铁精矿分别为51.87%和5.36%。  相似文献   

17.
从内蒙古某高硫铁尾矿中回收铁的研究   总被引:1,自引:0,他引:1  
内蒙古某硫铁矿属以硫为主、伴生低品位铜锌的复杂硫化矿石, 经浮选流程产生了铁品位为17.75%、硫含量为5.87%的高硫铁尾矿。针对此高硫铁尾矿进行了磁选、摇床、磁选-反浮选和直接还原焙烧-磁选等一系列提铁降硫的探索试验研究。结果表明, 采用常规选矿方法很难达到理想的分选效果;而采用直接还原焙烧-磁选方法可获得铁品位为93.57%、硫含量为0.39%、对弱磁精矿的回收率为82.01%的直接还原铁产品, 为有效提高资源综合利用率提供了新的途径。  相似文献   

18.
对某低品位镜铁矿进行了强磁-阴离子反浮选试验研究。在磨矿粒度为-0.074 mm粒级占95%条件下, 先采用强磁选抛尾, 再对粗精矿一粗两扫反浮选, 可得到品位为66.12%、作业回收率66.49%的铁精矿, 铁总回收率达到58.70%。  相似文献   

19.
刘兴华  陈雯 《金属矿山》2014,43(5):64-69
为给新疆某低品位细粒磁铁矿的开发利用提供合理的选矿工艺,针对矿石性质的特点,进行了阶段磨矿、阶段弱磁选工艺和阶段磨矿、阶段弱磁选、阳离子反浮选工艺试验。结果表明:①采用3段磨矿、4次弱磁选的阶段磨选工艺流程处理该矿石,在三段磨矿细度为-0.038 mm占95.18%的情况下,可获得铁品位为66.48%、铁回收率为78.79%的铁精矿;采用2阶段磨矿弱磁选、弱磁精矿2阳离子反浮选、反浮选尾矿再磨-弱磁选抛尾后再返回反浮选的流程处理该矿石,在反浮选尾矿再磨细度为-0.038 mm 占96.34%的情况下,可获得铁品位为69.76%、铁回收率为78.51%的铁精矿。②单一弱磁选流程虽然简洁,但弱磁选、阳离子反浮选联合流程在最后一段磨矿量(相对原矿)显著下降22.99个百分点的情况下,最终精矿铁品位却大幅提高3.28个百分点。  相似文献   

20.
吴熙群  鞠义武 《矿冶》1997,6(4):25-29,19
究了含有独居石、钛铁矿、锆英石、金红石和锡石的潜水层以下海滨砂矿中毛矿精选新工艺,毛矿重选富集后湿式强磁选。磁性产品在自然pH值条件下,添加水玻璃、MS-5浮选独居石,浮选精矿经磁选后得品位高于65%的独居石精矿;独居石浮选尾矿通过磁选得到钛铁矿精矿。非磁性产品用摇床丢尾并将有用矿物分成3组粗精矿和1组中矿,锆英石粗精矿和中矿采用分流流程、捕收剂B3和抑制剂RW,在弱酸性条件下浮选,浮选精矿电选除钛后得锆精矿特级品和一级品;锆英石浮选尾矿经电选和金红石粗精矿采用浮选-电选流程均可获得含TiO2高于90%的金红石精矿。锡石粗精矿用电选精选得锡石精矿。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号