首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 187 毫秒
1.
微乳液法制备长余辉发光材料CaAl2O4:Eu2+,Dy3+   总被引:5,自引:0,他引:5  
采用微乳液法合成CaAl2O4:Eu^2 ,Dy^3 长余辉发光材料,并对其晶型结构和发光性能进行研究,XRD分析表明,所合成的样品为CaAl2O4单斜晶系的晶体结构.发光粉体的激发波长范围较宽,表明从紫外至可见光均可激发该发光材料、发射光谱主峰位于440nm左右,余辉衰减曲线证明其余辉衰减过程存在快衰减和慢衰减2个过程、样品在自然光照射后持续发出明亮的蓝光。  相似文献   

2.
采用微乳液法合成CaAl2O4:Eu2 ,Dy3 长余辉发光材料,并对其晶型结构和发光性能进行研究.XRD分析表明,所合成的样品为CaAl2O4单斜晶系的晶体结构.发光粉体的激发波长范围较宽,表明从紫外至可见光均可激发该发光材料.发射光谱主峰位于440nm左右.余辉衰减曲线证明其余辉衰减过程存在快衰减和慢衰减2个过程.样品在自然光照射后持续发出明亮的蓝光.  相似文献   

3.
采用高温固相法制备SrAl2O4:Eu^2+,Dy^3+长余辉发光材料.借助材料的激发光谱、发射光谱和X射线,分析研究掺杂B对SrAl2O4:Eu^2+,Dy^3+发光材料发光性能的影响.结果表明: H3BO3作为助熔剂,能提高发光材料的发光强度,H3BO3加入量的变化并不引起发光材料发射光谱峰值的变化.研究粒度大小对发光性能的影响.结果表明:粒度大于200目的发光粉的发光亮度较强.  相似文献   

4.
采用高温固相法合成蓝色Sr2MgSi2O7:Eu2 ,Dy3 长余辉发光材料,并且表征其晶体结构、激发光谱、发射光谱和余辉衰减特性.确定高温固相法合成该材料的最佳温度在1200℃.XRD分析表明,所合成的样品为Sr2MgSi2O7晶体结构.发光粉体的激发光谱为一宽带连续谱,表明从紫外光至可见光均可激发该发光材料.发射光谱主峰位于470nm附近.当Eu2 /Dy3 掺杂摩尔比是1/2时,发光材料的余辉效果最好,产品经自然光激发一段时间后,移至黑暗处,可持续8h以上发出人眼可辨的蓝光.  相似文献   

5.
采用高温固相法合成Ba2MgSi2O7:Eu^2+绿色荧光粉,研究其发光性能.通过XRD测试样品的晶相结构,荧光分光光度计测试样品的激发和发射光谱,研究激活剂Eu^2+的物质的量对荧光粉发光强度的影响。XRD结果表明,所合成的样品硅酸镁钡即Ba2MgSi2O7晶体结构.光谱分析结果表明,当Eu^2+的物质的量为0.1mol时,Ba2MgSi2O7:Eu^2+样品的发光强度最高.  相似文献   

6.
在还原气氛下利用固相反应法合成SrAl2O4:Eu2 ,Dy3 长余辉发光粉,以该发光粉和铅锌硼硅酸盐玻璃为原料制备长余辉蓄光玻璃,并通过磷光激发和发射光谱,研究发光粉加入量等因素对发光玻璃光学性能的影响.研究结果表明:该发光玻璃保持了SrAl2O4:Eu2 ,Dy3 长余辉发光粉的发光性能,紫外光激发后,发射出波长位于520nm处的黄绿色光,该谱线为Eu2 在4f65d1→4f7跃迁的特征谱线;在本实验条件下,发光粉的最佳掺入质量分数为30%;随熔制温度的提高,发光玻璃的发光强度及余辉时间明显下降.  相似文献   

7.
采用SrAl2O4:Eu2 ,Dy3 长余辉发光粉、成品清漆,添加分散剂等助剂制备的溶剂型发光涂料,制备了发光标牌.该发光标牌除具有SrAl2O4:Eu2 ,Dy3 发光亮度高、余辉时间长的性能,还具有了耐水耐潮湿和易清洁的性能;激发光谱表明,紫外和可见光能有效激发,发射光谱表明其发射峰位于520nm附近,呈耀眼醒目的黄绿色.  相似文献   

8.
用SrCO3、Al2O3、Eu2O3和Dy2O3烧制SrAl2O4:Eu^2 ,Dy^3 长余辉光致发光陶瓷,其烧结温度为1300℃--1400℃,烧结时间为3小时。H3BO3作为助溶剂,掺入量为3-5%,可有效降低烧结温度。X-射线衍射分析表明SrAl2O4:Eu^2 ,Dy^3 发光陶瓷的晶体结构为SrAl2O4单斜晶系晶体结构,晶格常数为a=8.4424A,b=8.822A,c=5.1607A。激发光谱和发光光谱分析表明:发光光谱是峰值位于520nm的宽带谱,激发光谱是位于240nm-80nm之间的连续宽带谱,表明SrAl2O4:Eu^2 ,Dy^3 发光陶瓷由紫外光至可见光均可有效地激发而发光。  相似文献   

9.
采用硼酸覆盖工艺在低温、还原气氛下制备了M(Ca,Ba)OAl2O4:Eu^2+,Dy^3+长余辉发光材料。用X射线粉晶衍射对其进行了物相鉴定,表明在1175℃已经得到纯相的M(Ca,Ba)OAl2O4产物。研究了产物的激发-发射光谱,激活剂Eu^2+掺量和碱金属的比值以及激活剂Eu^2+和Dy^3+比值等条件对长余辉发光材料的相对发光强度的影响。结果表明:采用碳粉掩埋坩埚制造还原气氛,硼酸覆盖原料上方,灼烧温度为1175℃,恒温150min,随炉自然降温的生产工艺,可制备出发光性能优良的碱土铝酸盐长余辉发光材料。  相似文献   

10.
以硝酸盐和尿素为基质,采用一次燃烧法在较低炉温(600-620℃)下合成了SrAl2O4:Eu^2+,Dy^3+长余辉发光材料.通过对比实验,研究了原料的用量对产物合成及性能的影响.实验结果表明,在n(尿素):n(硝酸盐)=12:1,硼酸摩尔分数为0.10%~0.12%,Eu2O3为0.2%,Dy2O3为0.4%时,制备的SrAl2O4:Eu^2+,Dy^3+具有好的余辉性能.  相似文献   

11.
以尿素和硝酸盐溶液为反应物,采用空气气氛,在600℃合成了棒状SrAl2O4:Eu2+,Dy3+绿光长余辉发光粉。研究了产物的物相组成、形貌、激发光谱、发射光谱以及余辉衰减曲线。结果表明:产物的晶体结构属于单斜晶系,呈规则的棒状;样品在紫外线照射后发射绿光,发光峰值位于512 nm处,余辉时间可达6 h。并深入研究了尿素和高温煅烧对其发光性能的影响。  相似文献   

12.
用微波等离子体技术合成长余辉发光材料   总被引:7,自引:1,他引:7  
采用微波等离子体法(MWPM)和高温固相法(HTSSM)合成长余辉发光材料SrAl2O4:Eu,Dy,重点比较了微波等离子体制备技术相对于传统工艺在主要参数条件上的差异及对产物形态、结构和性能的影响。X射线衍射分析表明在合适工艺条件下两者合成的产物均为单斜晶系的SrAl2O4,且前者的相组成纯度更高;粒度分析结果证明微波等离子体法合成粉体的粒度较小,且粒径分布更窄;荧光分光光度计测定两种样品的激发光谱和发射光谱,其位置和形状相差不大,峰值波长均分别位于375nm和520nm处,但微波等离子体法的谱强度更高。研究表明微波等离子体技术是一种高效、简便、易于重复和控制的高品质长余辉发光材料合成方法。  相似文献   

13.
采用空气气氛和还原气氛,制备了稀土Eu2O3、Dy2O3掺杂的铝硅酸盐玻璃,利用X射线衍射仪和荧光光谱仪对样品进行了测试,分析了长余辉发光玻璃的发光机理.结果表明:空气气氛条件下制备掺Eu3 和Dy3 的铝硅酸盐玻璃样品均不具备长余辉发光性能,经还原气氛处理后,玻璃样品具有长余辉发光现象,且陷阱能级较深,在紫外光激发下样品具有很好的长余辉发光特性和更高的发光亮度,样品的发光持续时间长达12h以上.  相似文献   

14.
采用水热合成法制备红色荧光粉Ca0.70Sr0.18-0.15xMoO4:0.08Eu3+,xY3+.用XRD、荧光分光光度计、SEM对其物相、发光性能以及形貌进行测试和表征.结果表明:荧光粉为CaMoO4物相结构.荧光粉粒径小且粒度分布均匀.荧光粉在395 nm和465 nm的吸收分别与紫外光和蓝光LED芯片输出波长相匹配.分别采用395 nm的近紫外光和465 nm的可见光激发样品,Ca0.70Sr0.18-0.15xMoO4:0.08Eu3+,xY3+荧光粉发红光,主发射峰位于616 nm.Y3+的引入,把自身吸收的能量和基质吸收的部分能量传递给发光中心,使Eu3+发光强度进一步增强.红色荧光粉Ca0.70Sr0.09MoO4:0.08Eu3+,0.06Y3+色坐标比商用的Y2O3:Eu3+红色荧光材料更接近于标准红色色坐标.  相似文献   

15.
SrAl2O4:Eu2+,Dy3+光致发光釉的研究   总被引:9,自引:0,他引:9  
利用SrAl2O4:Eu^2 ,Dy^3 长余辉光致发光粉体,在陶瓷坯体上制备了釉面平整光滑的长余辉光致发光釉;通过比较SrAl2O4:Eu^2 ,Dy^3 粉体和光致发光釉的激光光谱和发光光谱以及结构分析表明,该发光釉保持了SrAl2O4:Eu^2 ,Dy^3 发光材料的发光特性,其发射峰是中心位于520nm的宽带光谱;研究了釉料不同组成对发光釉性能的影响及SrAl2O4:Eu^2 ,Dy^3 粉体的不同含量对光致发光釉发光亮度和余辉时间的影响,获得了釉面发光亮度高、余辉时间长的最佳配方。  相似文献   

16.
采用高温固相法制备了Gd2O2S:Yb3+,Ho3+上转换发光材料,并研究了激活剂Ho3+和敏化剂Yb3+之间配比、烧结的温度和烧结时间对上转换发光材料发光性能的影响,得到了最佳离子配比、烧结时间与烧结温度,用XRD、SEM、荧光光谱等对样品进行了表征.采用快进快出的制备工艺,得到的上转换发光材料尺寸约为4μm,粒度均一,具有明显的六方晶形.Gd2O2S:Yb3+,Ho3+在Ho3+/Yb3+摩尔掺杂比为0.5:18,1150℃条件下烧结2h时,发光最强.该粉体在980nm红外光照射下发出耀眼的绿光,光谱峰值位于544nm和548nm两个发射峰,对应于Ho3+离子的5F4,5S2→5I8跃迁.在1064nm红外光照射下,光谱峰值位于548nm处的主峰,对应于Ho3+离子的5S2→5I8跃迁.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号