首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hydrodynamics and temperature of a two-dimensional gas–solid fluidized bed of gas phase olefin polymerization reactor had been studied. A two-fluid Eularian Computational Fluid Dynamics (CFD) model with closure relationships according to the kinetic theory of granular flow has been applied in order to simulate the gas–solid flow. Fluidization regime and gas–solid flow pattern were investigated using three different drag models. Model predictions of bed pressure drop were compared with corresponding experimental data reported in the literature to validate the model. The predicted values were in reasonable agreement with the experimental data. The temperature behavior of fluidized bed with various drag models was investigated. The temperature gradient in the primary section of the bed was much larger than the gradient in other sections and the effect of all drag models on temperature gradient along the bed was approximately similar.  相似文献   

2.
Two- and three-dimensional CFD modeling of heat transfer from discrete circular cylindrical particles in four different situations including A) infinite cylinder in cross-flow, B) cross-flow on finite cylinder with different aspect ratio in a rectangular duct, C) axial-flow on finite cylinder and D) axial-flow on finite cylinder with upstream turbulence have been investigated with the commercial CFD software, FEMLAB. The results were validated using experimental data from different research papers and also experimental correlations and show good quantitative and qualitative agreement with each other. In case B, a correction term has been proposed from CFD work which is applied to an experimental correlation to consider the aspect ratio influence on predicting the Nusselt number with an average error of 3.7%.  相似文献   

3.
The heat transfer characteristics of solid cylinders in a bed with tube-to-particle diameter ratio equal to 2, by the presence of contact points between the cylinders were investigated numerically. Three-dimensional CFD simulation of air flow through two different arrangements of particles in this randomly packed bed have been carried out by the standard κε turbulence model with the use of FEMLAB (Multiphysics in MATLAB) software version 2.3. The simulation results were validated by naphthalene sublimation mass transfer experiments. From mass and heat transfer analogy, the Nusselt numbers for each cylindrical particle in bed were found from the corresponding Sherwood numbers. It is shown that the CFD simulation results can predict the heat transfer characteristics, with an acceptable average error compared to experimental values.  相似文献   

4.
A numerical model for liquid mal-distribution in randomly trickle bed reactors has been investigated and the results are compared with the experimental data. A CFD model based on the three-phase Eulerian approach is developed and a two-fluid model is utilized to perform the inter-phase momentum exchanges. Furthermore, radial distribution of the bed porosity is considered adjacent to the reactor wall. Two different types of liquid inlet distributors have been used in order to study the accuracy of the CFD model. To validate the CFD model, the simulation results are compared with the experimental data and the results from the porous media concept in which the permeability model has been applied to implement the inter-phase momentum exchange. Experimental results have been obtained on an industrial trilobe catalyst under a trickling flow regime in a pilot scale reactor setup. Co-current liquid and gas streams have entered to the reactor through a mono or multi orifice distributor. Results of the developed CFD model have found more accurate than that of the porous media concept when compared with the experimental data.  相似文献   

5.
To reach the target of smaller pressure drop and better heat transfer performance, packed beds with small tube-to-particle diameter ratio (D/d p<10) have now been considered in many areas. Fluid-to-wall heat transfer coefficient is an important factor determining the performance of this type of beds. In this work, local fluid- to-wall heat transfer characteristic in packed beds was studied by Computational Fluid Dynamics (CFD) at different Reynolds number for D/d p=1.5, 3.0 and 5.6. The results show that the fluid-to-wall heat transfer coefficient is oscillating along the bed with small tube-to-particle diameter ratio. Moreover, this phenomenon was explained by field synergy principle in detail. Two arrangement structures of particles in packed beds were recommended based on the synergy characteristic between flow and temperature fields. This study provides a new local understanding of fluid-to-wall heat transfer in packed beds with small tube-to-particle diameter ratio.  相似文献   

6.
Computational fluid dynamics (CFD) tool has been used for investigation of convective heat transfer of CO2 in two porous tubes. Effects of some important parameters such as pressure, inlet temperature, mass flow rate, wall heat flux and porosity on temperature distribution and local heat transfer coefficients have been studied numerically. Near the supercritical conditions, these parameters are very effective on temperature gradient and local heat transfer coefficients. For example at p = 9.5 MPa, under the same conditions, the heat transfer coefficient in a tube with particle diameters of 0.1–0.12 mm is about 20–30% higher than when the particle diameter of 0.2–0.28 mm were used. The heat transfer coefficient increases with decreasing pressure and increasing mass flow rate. Also the porosity of the bed has the important role on the heat transfer. The CFD predictions have been compared to the experimental data and showed pretty good agreement.  相似文献   

7.
In this paper, heat transfer of single cylindrical particle affected by wall has been investigated numerically and experimentally for Reynolds number range 2000 to 6000. The heat transfer in two different orientations, axial and cross flow over the particle has been considered in simulation with MultiPhysics Software FEMLAB version 2.3. The heat and mass transfer analogy technique has been applied for validation of the simulation results. The coated particle with naphthalene was sublimated to obtain the corresponding Sherwood numbers. The results show that the CFD model can predict the particle-to-fluid heat transfer for two situations due to trivial error (an average error of 6%) compared to experimental values. Influence of wall on heat transfer of particle in seven different bed-to-cylinder diameter ratio (N = 1.66, 2.65, 2.75, 5, 6.66, 12, and 18) have been discussed in different velocities. According to obtaining results, with increasing the bed-to-cylinder diameter ratio over the 12 wall have no significant consequence on Nusselt number. Due to this fact, a CFD based correlation has been proposed to consider the wall effects on particle-to-fluid Nusselt number with an average error of 2.19%.  相似文献   

8.
The efficiency, robustness and reliability of recent numerical methods for finding solutions to flow problems have given rise to the implementation of computational fluid dynamics (CFD) as a broadly used analysis method for engineering problems like membrane separation system. The CFD modeling in this study observes steady and unsteady (transient) heat flux and temperature profiles in a polymeric (cellulose acetate) membrane. This study is novel due to the implementation of user defined scalar (UDS) diffusion equation by using user-defined functions (UDFs) infinite volume method (FVM). Some details of the FVM used by the solver are carefully discussed when implementing terms in the governing equation and boundary conditions (BC). The contours of temperature due to high-temperature gradient are reported for steady and unsteady problems.  相似文献   

9.
The overall heat loss coefficient (U-value) of a vacuum tube solar collector is investigated experimentally and theoretically with regard to the pressure of the remaining gas inside the evacuated glass envelope. A number of collector tubes of same geometry are randomly selected from an installation of a solar based air-conditioning system and tested individually in the laboratory for the determination of the U-value. Measurement results indicate that most of the examined collector tubes have higher overall heat loss coefficients than expected corresponding to a significant amount of gas inside the glass envelope.For the same conditions, an approximate theoretical model is developed for the evaluation of the U-value. The theoretical model is validated against the experimental results for a collector tube having air inside the glass cover at atmospheric pressure and found to be in close agreement. Then, the influence of gas pressure is studied for various gases. Possible presence of air, hydrogen, helium and argon is discussed.  相似文献   

10.
This paper described the design on the lab-scale horizontal continuous stirred-tank reactor (HCSTR) that the effective working volume is relatively large and the performance is stable at lower agitating speed. Using the Computational Fluid Dynamics (CFD) simulation with an ethanol-type fermentation process experiment we determined the optimal agitating speed range for the bio-hydrogen production from analysis on the flow pattern generated at the various agitating speed conditions and select and the suitable three phase separator design has been constructed for gas–liquid–solid three phase separations. The experimental results in the designed bioreactor show that the agitating speeds of 50 rpm is most suited for economical bio-hydrogen production and three phase separation. It was consistent with the prediction from CFD simulation. The information obtained from this study is expected to provide basic knowledge on the optimal design of bioreactor and three phase separator aimed for scale up of the continuous stirred-tank reactor for bio-hydrogen production.  相似文献   

11.
In this study, a gas–solid fluidized bed reactor has been simulated applying CFD techniques in order to investigate hydrodynamic and heat transfer phenomena. Reactor model predictions were compared with corresponding experimental data reported in the literature to validate the model. The results indicate that considering two solid phases, particles with smaller diameters have lower volume fraction at the bottom of the bed and higher volume fraction at the top of the bed. In addition, it was revealed that bed expansion was larger when a bimodal particle mixture was applied compared with the case of mono-dispersed particles. Gas and solid phase temperature distributions in the reactor were also computed, considering the hydrodynamic of the fluidized bed and the heat generated by the solid particles. The results showed that gas temperature increases as it moves upward in the reactor due to the heat of polymerization reaction leading to the higher temperatures at the top of the bed.  相似文献   

12.
Shell and tube heat exchanger with single twisted tube bundle in five different twist angles, are studied using computational fluid dynamics (CFD) and compared to the conventional shell and tube heat exchanger with single segmental baffles. Effect of shell-side nozzles configurations on heat exchanger performance is studied as well. Heat transfer rate and pressure drop are the main issues investigated in the paper. The results show that, for the same shell-side flow rate, the heat transfer coefficient of heat exchanger with twisted tube bundle is lower than that of the heat exchanger with segmental baffles while shell-side pressure drop of the former is even much lower than that of the latter. The comparison of heat transfer rate per unit pressure drop versus shell-side mass flow rate shows that heat exchanger with twisted tube bundle in both cases of perpendicular and tangential shell-side nozzles, has significant performance advantages over the segmental baffled heat exchanger. Optimum bundle twist angles for such exchangers are found to be 65 and 55° for all shell side flow rates.  相似文献   

13.
This paper presents the comparison of a three-dimensional Computational Fluid Dynamics (CFD) analysis with empirical performance data of a 0.6 m Impulse Turbine with Fixed Guide Vanes used for wave energy power conversion. Pro-Engineer, Gambit and Fluent 6 were used to create a 3-D model of the turbine. A hybrid meshing scheme was used with hexahedral cells in the near blade region and tetrahedral and pyramid cells in the rest of the domain. The turbine has a hub-to-tip ratio of 0.6 and results were obtained over a wide range of flow coefficients. Satisfactory agreement was obtained with experimental results. The model yielded a maximum efficiency of approximately 54% as compared to a maximum efficiency of around 49% from experiment. A degree of insight into flow behaviour, not possible with experiment, was obtained. Sizeable areas of separation on the pressure side of the rotor blade were identified toward the tip. The aim of the work is to benchmark the CFD results with experimental data and to investigate the performance of the turbine using CFD and to with a view to integrating CFD into the design process.  相似文献   

14.
This paper presents the Direct Numerical Simulation of interphase mass transfer in gas liquid multiphase system. The volume-of-fluid (VOF) method in conjunction with mass transfer model has been used. In order to study the process of interphase mass transfer two numerical simulation methods are presented. Two common mass transfer mechanisms, Diffusion through Stagnant Film (DTSF) and Equi-Molal Counter Diffusion (EMCD), are investigated. Two benchmarks, the Stefan diffusion problem and the diffusion in water and methanol Gas-Liquid system, have been used to validate the numerical methods. Afterwards two proposed numerical solution for different mass transfer mechanisms have been investigated in stratified gas liquid flows between two parallel plates. The results show by different approaches in numerical solution, the accuracy of mass transfer simulation is different.  相似文献   

15.
In this research, the convective heat transfer coefficients of water-based FMWNT nanofluid have been measured under both laminar and turbulent regimes flowing through a uniformly heated horizontal tube in entrance region. For the first time, we have compared effective parameters to measure the convective heat transfer coefficients for functionalized MWNT suspensions such as Re, mass fraction and temperature, altogether in entrance region. The experimental results indicate that the convective heat transfer coefficient of these nanofluids increases by up to 33–40% at a concentration of 0.25 wt.% compared with that of pure water in laminar and turbulent flows respectively and 20 °C.  相似文献   

16.
The key factors for efficient in-flight particle heating in a combusting flow were investigated within this paper for the development of a novel boiler slag bead production furnace. A natural gas fired industrial burner with a thermal input of 1.2?MW was thus evaluated using Computational Fluid Dynamics (CFD). The steady laminar flamelet model (SFM) and a detailed chemical reaction mechanism, considering 25 reversible chemical reactions and 17 species were used to account for the steady-state gas phase combustion. Measurements of gas temperature and flow velocity within the furnace were found to be in good accordance with the numerical results. In the second step, sintered bauxite beads were injected into the furnace as an experimental material and heated up in flight. The particle heating characteristics were investigated using the Discrete Phase Model (DPM). The computational results of the particle laden flow raised the issue that convective heat transfer is a key factor for efficient particle heating. At the burner chamber outlet, the temperature of a particle which had been injected into the burner flame was 178?K higher compared to a particle, which trajectory led through zones with lower gas temperatures.  相似文献   

17.
换热器结垢工况下换热系数变化的分析研究   总被引:8,自引:1,他引:7  
介绍了换热器污垢热阻的数学模型,包括污垢沉积模型和剥蚀模型。分析了换热器结垢工况下的换热系数的变化,重点研究了时间、流体雷诺数Re和流体—污垢界面温度Ts对换熟系数K的影响,以及在结垢诱导期内换热系数K的变化。得到了冷却水流速与污垢热阻之间的关系式,界面温度Ts与污垢热阻和换热系数之间关系的示意图,并得出了诱导期内的换热系数K大于结垢过程的其他四个阶段的结论。最后,阐述了分析结果对工程的实际指导意义。  相似文献   

18.
This work deals with the cooling of high-speed electric machines, such as motors and generators, through an air gap. It consists of numerical and experimental modeling of gas flow and heat transfer in an annular channel. Velocity and temperature profiles are modeled in the air gap of a high-speed test machine. Friction and heat transfer coefficients are presented in a large velocity range. The goals are reached acceptably using numerical and experimental research. The velocity field by the numerical method does not match in every respect the estimated flow mode. The absence of secondary Taylor vortices is evident when using time averaged numerical simulation.  相似文献   

19.
以高温气冷堆蒸发器为背景,采用FLUENT软件模拟了单相水和蒸汽在不同尺寸螺旋管内部的流动和传热过程,研究了壁面局部传热特性。计算结果表明,远离螺旋中心线一侧局部传热较强而靠近螺旋中心线一侧传热较弱,壁面Nu周向分布非常不均匀。管径与螺旋直径之比是主要影响因素,当其值增大时截面温度极值点向螺旋中心线外侧移动,加剧了温度分布和Nu分布的不均匀性。在层流向湍流过渡区内,Re的增大使截面各点温度梯度均有所增加,同时也增大了Nu周向分布的不均匀程度,但在旺盛湍流区内Re对Nu分布无明显影响。壁面热边界条件形式对局部Nu周向分布没有显著影响。给出了局部Nu的估算式。  相似文献   

20.
The paper numerically investigated the heat transfer coefficients over the rotating blades in a 1.5-stage turbine. The hexahedral structured grids and k-ε turbulence model were applied in the simulation. A film hole with diameter of 0.004 m, angled 36°and 28° tangentially to the suction side and pressure side in streamwise respectively, was set in the middle span of the rotor blade. Simulations are done at three different rotating numbers of 0.0239, 0.0265 and 0.0280 with the blowing ratio varying from 0.5 to 2.0. The effects of mainstream Reynolds number and density ratio are also compared. Results show that increasing blowing ratio can increase the heat transfer coefficient ratio on the pressure side, but the rule is parabola on the suction side. Besides, increasing rotating number and Reynolds number is positive while increasing density ratio is negative to the heat transfer on both the pressure side and the suction side.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号