首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
通过选取R227ea、R600和R141b 3种典型有机干流体作为工质,在热源流体进口温度设定为典型工业锅炉排烟温度423.15 K,冷却水进口温度和环境温度分别设定为283.15 K和293.15 K的条件下,分析蒸发温度、过热度和给水加热器出口处工质温度对回热有机朗肯循环性能的影响,比较回热有机朗肯循环与基本有机朗肯循环的性能。结果表明:随着蒸发温度的增大,循环总不可逆损失减小,循环热效率和第二定律效率增大,而循环输出净功率则先增大后减小;随着过热度的增大,循环总不可逆损失和循环输出净功率均减小,而循环热效率和第二定律效率的变化趋势则因工质而有所不同;随着给水加热器出口处工质温度的增大,循环总不可逆损失和循环输出净功率不断降低,而循环热效率和第二定律效率则先增后减;在相同工况下,回热有机朗肯循环的循环热效率和第二定律效率高于基本有机朗肯循环,但对于循环输出净功率和循环总不可逆损失,结果则相反。  相似文献   

2.
文中介绍了有回热/无回热有机朗肯循环,并对其进行了理论分析和基于pro II软件对朗肯循环的流程模拟。并针对某化工厂80℃左右的热水,以丁烷为工质,探讨了蒸发器冷源的工质的状态为饱和态和过热态对有回热/无回热朗肯循环的膨胀机输出功和朗肯循环的循环热效率的影响。当工质的状态为饱和状态时,对有无回热的朗肯循环影响不大。但是,当工质的状态为过热态时,有回热的朗肯循环的膨胀机输出功和热循环效率比无回热的朗肯循环要大。这说明增加回热器是很有必要的,它可使能量的回收利用大大增加。  相似文献   

3.
以系统发电成本(electricity production cost,EPC)为评价指标,对用于回收工业锅炉烟气余热的有机朗肯循环(ORC)系统进行了热经济分析与优化。结果表明,随着蒸发器和冷凝器节点温差的增大,系统发电成本先减小、再增大,即存在一组最优的蒸发器和冷凝器节点温差使发电成本最小。分别以纯工质R245fa和R236ea、非共沸混合工质R141b/RC318和乙烷/丁烷为循环工质,得到了最小发电成本时有机朗肯循环系统的最优工作参数,以及对应的系统净输出功、热效率和火用效率。  相似文献   

4.
针对工业中排放的低温烟气,建立有机朗肯循环发电系统的热经济分析模型,分析蒸发压力、热源温度及蒸发器最小传热温差对系统经济性能的影响。分析结果表明:热源温度为140℃,循环采用R123的经济性最佳,相应的发电成本与动态投资回收期分别为0.142元(/kW.h)与3.68年。余热发电系统存在一个经济性最高的蒸发压力,不同工质对应的最佳蒸发压力也不同。蒸发器内最小传热温差为15℃时,系统的经济性较好。烟气温度在100~180℃时,系统采用R123的投资回收期最短,而烟气温度高于180℃时,R141b的经济性更高;不宜采用有机朗肯循环发电技术回收温度低于100℃的低温烟气。  相似文献   

5.
介绍了采用有机朗肯循环的废热回收技术原理,分析了内燃机车柴油机废热的种类和废热的可回收性,制定了一种基于有机朗肯循环的内燃机车柴油机废热回收技术方案,间接提高了内燃机车柴油机的热工转换效率.  相似文献   

6.
基于有机朗肯循环低温余热利用研究   总被引:2,自引:0,他引:2  
文章应用PR方程编制了有机工质热物性计算程序,对多种有机工质的朗肯循环进行了热力计算,研究了各主要参数对朗肯循环性能影响的规律。在给定余热条件下,采用模拟退火算法对循环的主要参数进行优化,得出了整个循环在净输出功率最大时的最优参数值,并比较了以R236fa为工质的有机朗肯循环和常规朗肯循环的对外做功能力。  相似文献   

7.
采用(火用)分析方法及PR状态方程,建立了低温地热发电有机朗肯循环的工质优选及主要参数优化热力学方法.比较计算了以10种干流体有机工质为循环工质的低温地热发电有机朗肯循环的输出功率、(火用)效率及其余主要热力性能.结果表明,低温地热发电有机朗肯循环的性能极大地受工质的物性及蒸发温度的影响.总体来看,随着工质临界温度的升...  相似文献   

8.
对柴油机废热驱动有机朗肯循环(ORC)发电系统的4种方案进行了理论分析;并以200,kW柴油发电机废热回收为对象,设计一台以R245fa为循环工质的废热驱动ORC发电系统样机.在柴油发电机输出功率为180,kW时,分别以"发动机冷却液"和"发动机冷却液和尾气"为热源,测试ORC系统的循环性能.结果表明:单独依靠发动机冷却液驱动ORC系统时,节温器开闭导致系统无法稳定工作.当强制开启节温器、R245fa流量从0.32,kg/s增大到0.41,kg/s时,冷却液出水温度迅速下降,而系统净发电量单调递增至3.1,kW;净效率曲线呈先增后减的变化趋势,并在0.35,kg/s时达到3.8%的最大值.当发动机冷却液和尾气共同驱动ORC系统时,系统净发电量可达9.9,kW,净效率为6.3%.  相似文献   

9.
叙述了太阳能低温有机肯循环技术,该技术解决了如何高效的收集太阳能的问题,同时相关设备易于制造成本较低,具有很高的应用价值和前景。  相似文献   

10.
朱正良  张华 《能源研究与信息》2018,34(3):132-135,140
太阳能具有易转化为低温热源的特性,而有机朗肯循环是利用低温热源或工业余热发电的理想方式,两者相结合形成基于太阳能的有机朗肯循环发电技术。综述了我国光热太阳能发电技术和市场现状以及针对有机朗肯循环的研究现状。经分析发现,目前研究中理论分析或计算机模拟较多,缺乏实际应用的验证。论述了有机朗肯循环工质的选择、循环性能分析方法以及所面临的问题和改善方法。  相似文献   

11.
The exergy topological method is used to present a quantitative estimation of the exergy destroyed in an organic Rankine cycle (ORC) operating on R113. A detailed roadmap of exergy flow is presented using an exergy wheel, and this visual representation clearly depicts the exergy accounting associated with each thermodynamic process. The analysis indicates that the evaporator accounts for maximum exergy destroyed in the ORC and the process responsible for this is the heat transfer across a finite temperature difference. In addition, the results confirm the thermodynamic superiority of the regenerative ORC over the basic ORC since regenerative heating helps offset a significant amount of exergy destroyed in the evaporator, thereby resulting in a thermodynamically more efficient process. Parameters such as thermodynamic influence coefficient and degree of thermodynamic perfection are identified as useful design metrics to assist exergy‐based design of devices. This paper also examines the impact of operating parameters such as evaporator pressure and inlet temperature of the hot gases entering the evaporator on ORC performance. It is shown that exergy destruction decreases with increasing evaporator pressure and decreasing turbine inlet temperatures. Finally, the analysis reveals the potential of the exergy topological methodology as a robust technique to identify the magnitude of irreversibilities associated with real thermodynamic processes in practical thermal systems. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
通过构建复叠式非共沸工质有机朗肯循环系统模型,并采用■分析方法,研究了系统■效率随工质摩尔组分的变化规律以及不同摩尔组分下,系统各部件■损失分布情况。研究结果表明:受蒸发器泡点温度与高温级蒸发器夹点位置影响,当高温级循环工质环戊烷摩尔分数为0.8,低温级循环工质异丁烷摩尔分数为0.1时,系统■效率取得最大值48.56%,比采用纯工质时相对提高了3.83%;且采用非共沸工质后,排烟损失、高温级蒸发器■损失、低温级冷凝器■损失均有显著降低。  相似文献   

13.
Based on organic Rankine cycle (ORC), a trapezoidal cycle with theoretical model is proposed and built according to the trapezoidal configuration and the thermodynamic relation in T–s diagram. Simulations show that the relative deviation between trapezoidal cycle and ORC is lower than 5% within evaporation temperature of 5 °C lower than the critical temperature of the working fluids. Empirical equations to calculate the optimal evaporation temperature, the maximum net power output and the corresponding thermal efficiency are built, which relative deviations from ORC are lower than 4%. Trapezoidal cycle can break through the restrictions of the actual working fluids and the configuration of the ORC to extend the study of the ORC and investigate the general principle of the ORC (or the trapezoidal cycle). Trapezoidal cycle can develop to trilateral cycle or Carnot cycle, which are the boundary cycles of the trapezoidal cycle. Trapezoidal cycle can be used as a general cycle to investigate the relations and principles among the trilateral cycle, Carnot cycle and trapezoidal cycle (or ORC). The performance of these three cycles at maximum power and their relations are investigated in the same conditions of finite heat source. Results show that the maximum power and the corresponding thermal efficiency of the trapezoidal cycle are bounded between Carnot cycle and trilateral cycle. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
In consideration of the low efficiency of the organic Rankine cycle (ORC) with low-grade heat source (LGHS), an organic Rankine cycle with ejector (EORC) and a double organic Rankine cycle (DORC) based on the ORC is introduced in this paper. The thermodynamic first law and second law analysis and comparison on the ORC, EORC and DORC cycles are conducted on the cycle’s power output, thermal efficiency, exergy loss and exergy efficiency. Water is chosen as the LGHS fluid, and the same temperature and mass flow rate of the water is the standard condition for the comparative analysis on the cycles. The emphasis is on the thermodynamic performance at the maximum net power output of the cycles. The results show the power output is higher in the EORC and DORC compared to the ORC. And the cycle’s exergy efficiency could be ranked from high to low: DORC > EORC > ORC.  相似文献   

15.
热源温度高于473.15 K时,复叠式有机朗肯循环(organic Rankine cycle,ORC)可避免高温下工质热分解、膨胀比过大等缺点,相对单级ORC更具优势.跨临界循环相较常规亚临界具有更高的吸热压力及更好的热源匹配性,其与复叠式ORC耦合有望获得更优的热力性能.因此,构建了跨临界-亚临界复叠式ORC(TS...  相似文献   

16.
This paper presents experimental investigation of the performance of an organic Rankine cycle (ORC) with scroll expander which utilizes renewable, process and waste heats. An ORC test bench is built with a scroll expander‐generator unit modified from a refrigeration compressor‐electrical drive unit. A detailed experimental investigation within the test bench is performed with the organic working fluid R134a. The results show that scroll expander can effectively be used in low‐power ORC to generate mechanical work or electricity from low‐temperature thermal sources (e.g. 80–200 °C, respectively). The experiments are performed under fixed intake conditions into the expander. The pressure ratio and the load connected to the expander‐generator unit were varied. It is found that an optimum pressure ratio and an optimum angular speed co‐exist. When operating optimally, the expander's isentropic efficiency is the highest. The optimum angular speed is around 171 rad/s which corresponds to a generated voltage of 18.6 V. The optimum pressure ratio is about 4. The isentropic efficiency at optimum operation is found in the range of 0.5 to 0.64, depending on the intake conditions. The volumetric efficiency overpasses 0.9 at optimum operation and degrades significantly if the load is increased over the optimum load. A regenerative ORC equipped with the studied expender‐generator unit that operates under 120 °C heat source and has an air cooled condenser generates 920 W net power with efficiencies of 8.5% energetically and 35% exergetically. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
有机郎肯循环利用太阳能、地热能和余热驱动,是回收余热、实现能源可持续发展的一个很好途径。有机郎肯循环可与喷射制冷循环结合,可同时提供电能和冷量。喷射器内部流体的不可逆混合引起的能量损失,是该系统最大部分的能量损失。着眼喷射器内部流场分布和机理,分析工作参数和几何参数对其性能的影响,以优化喷射器设计,减小系统能量损失,提高带有喷射器的有机郎肯循环复合系统的效率和节能潜力。结果显示,提高引射压力和出口压力会导致喷射器内部更多能量损失,制约整体系统的性能;在给定工况下,可通过钝化喷嘴内壁面、喷嘴处于最佳位置使喷射器达到最大喷射系数、最优性能,和最小的能量损失。  相似文献   

18.
The coexistence of different kinds of waste heat sources on marine vessels with various temperature ranges increases the need for an optimal heat exchanger network (HEN) design for the heat collection process to reduce the unutilizable heat that needs to be discharged to overboard. The optimal HEN design has not been taken into consideration by using pinch point analysis in previous studies of marine organic Rankine cycle (ORC) systems that utilize from different kinds of waste heat sources. The objective of the study is to determine the optimal HEN design for an ORC integrated waste heat recovery system of a marine vessel by utilizing the pinch point analysis to improve the overall energy efficiency. Lubricating oil, high-temperature cooling water and scavenge air of the main engine, and the exhaust gas emitted from the boiler plant were identified as the major waste heat sources of a reference container ship. A heat collection stream, in which thermal oil is used as the heat transfer fluid that transfers the collected heat to an ORC system, was proposed. The pinch point analysis showed that the optimum waste heat recovery could be gained by separating the scavenge air cooler into three stages and the lubricating oil cooler into two stages. The results of the parametric study for the varying evaporator inlet pressure between 1000 and 3000 kPa showed that R1234ze(Z) yields the best performance among nine different organic working fluids with the thermal efficiency and exergy efficiency of 15.24% and 86.47% for the ORC system, respectively. For the proposed configuration, the unavailable waste heat that cannot be transferred to thermal oil was found as 23.71%, 16.56%, 13.17%, and 7.81% of the total waste heat produced by the heat sources, and also 8.24%, 9.80%, 11.55%, and 12.93% of the net power output produced by the main engine can be recovered for 25%, 50%, 76%, and 100% maximum continuous rating (MCR), respectively.  相似文献   

19.
针对余热的有效利用,建立了有机朗肯循环-复叠式制冷系统的热力学模型,其中:有机朗肯循环系统分别采用R123、R1234ze、R245fa、R600a、RC318、R141b等六种工质;复叠式制冷系统分别采用R22/R23、R404/R23、R290/R744、R717/R744等四种工质对。选择系统?效率作为性能评价指标,运用热力学第二定律研究系统运行参数对系统?效率的影响,分析了系统各部件的?损失,并指出了能量利用的薄弱环节,提出了有效提高系统性能的建议,为系统的优化提供参考。结果表明,对系统?效率而言,R141b和R717/R744是最佳工质。系统主要部件按?损失大小依次为凝汽器、膨胀机、高温级冷凝器、发生器、高温级压缩机、低温级蒸发器、蒸发冷凝器。尽可能提高压缩机的等熵效率,优化设计换热器的结构,减小传热温差,才能减少不可逆损失,提高换热器的?效率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号