共查询到20条相似文献,搜索用时 78 毫秒
1.
通过活性组分和载体筛选制备了MgO/γ-Al_2O_3催化剂,用于碳酸二甲酯(DMC)和正丁醇液相酯交换反应合成碳酸甲丁酯(BMC),并考察了活性组分前驱物、催化剂焙烧温度和活性组分负载量对催化剂活性的影响。结果表明,以Mg(OAc)_2·4H_2O为活性组分前驱物,催化剂焙烧温度为400℃,活性组分MgO负载量为5%时,MgO/γ-Al_2O_3表现出高的酯交换反应催化活性。同时考察了反应温度、原料配比对酯交换反应的影响,适宜的反应温度为100℃;物料配比n(DMC):n(正丁醇)=3:1时,正丁醇的转化率达到98.4%,BMC的选择性为91.9%,收率为90.4%。催化剂重复实验表明催化剂重复使用性能良好。 相似文献
2.
《石油化工》2015,44(5):581
采用溶胶凝胶/浸渍法制备Pb O/Si O2催化剂,用于苯酚与碳酸二甲酯(DMC)酯交换反应合成甲基苯基碳酸酯(MPC)。在间歇反应精馏塔中,考察制备催化剂的焙烧温度、Pb O负载量、催化剂用量、DMC与苯酚摩尔比、反应温度、反应时间等因素对酯交换反应的影响。实验结果表明,Pb O/Si O2催化剂适宜的焙烧温度为500℃、Pb O负载量为5%(x);适宜的反应条件为:催化剂用量2.3%(w)(基于反应体系的质量)、n(DMC)∶n(苯酚)=8、190~195℃、10 h,在此条件下苯酚转化率为72.0%,MPC选择性为96.5%;Pb O/Si O2催化剂至少可回用5次,具有较好的活性稳定性。 相似文献
3.
4.
CaO-PbO催化酯交换合成甘油碳酸酯 总被引:2,自引:0,他引:2
采用焙烧法制备了一系列混合金属氧化物催化剂,对其在碳酸二甲酯与甘油酯交换合成甘油碳酸酯反应中的催化性能进行了评价。实验结果表明,CaO-PbO催化剂的催化性能最好。同时考察了催化剂制备条件和甘油碳酸酯的合成条件对CaO-PbO催化剂催化性能的影响,确定适宜的催化剂制备条件为:以PbCO_3和CaCO_3为前体、PbCO_3与CaCO_3的质量比为1:9、焙烧温度900℃、焙烧时间为4 h。以此条件制备的CaO-PbO为催化剂,在反应温度85℃、催化剂用量(基于原料质量)1.5%、碳酸二甲酯与甘油的摩尔比3:1、反应时间90 min时,甘油转化率为98.5%,甘油碳酸酯的收率和选择性分别为97.8%和99.3%。催化剂重复实验结果表明,与CaO催化剂相比,CaO-PbO催化剂的稳定性有所提高,但仍需进一步改善。 相似文献
5.
利用廉价易得的绿色原料碳酸二甲酯和甘油通过酯交换反应合成甘油碳酸酯具有良好的发展前景。综述了近年来用于该反应的催化剂的研究进展,包括碱金属催化剂、碱土金属催化剂、混合氧化物催化剂、生物酶催化剂和离子液体催化剂。对各类催化剂的优缺点进行了比较,并指出了今后的发展方向。 相似文献
6.
碳酸二异十三酯是一种性能优良的合成润滑油基础油。在甲醇钠的催化作用下,以异十三醇和碳酸二甲酯为原料合成了碳酸二异十三酯。研究了催化剂用量、原料配比、反应时间及温度等因素对酯交换反应的影响。结果表明,较佳合成工艺条件是:催化剂甲醇钠∶碳酸二甲酯=0.02∶1(物质的量比),异十三醇∶碳酸二甲酯=2.4∶1(物质的量比),反应时间2 h,反应温度160℃。实验室产品收率达80%以上,产品黏度指数介于80~90,产品倾点低于-40℃,100℃黏度大于4 mm2/s,适合于做合成润滑油基础油。碳酸二异十三酯合成油应用于SL 5W-30汽油机油中,在低温性能方面表现良好,能够达到低温指标要求。用红外光谱和质谱对反应产品进行了结构确定。 相似文献
7.
在甲醇钠的催化作用下,以异构C16~C20混合醇和碳酸二甲酯为原料合成了碳酸高碳二烷基酯。研究了催化剂用量、原料配比、反应时间及温度等因素对酯交换反应的影响。实验结果表明,较佳的合成工艺条件为:催化剂甲醇钠∶碳酸二甲酯=0.08∶1(摩尔比),异构C16~C20混合醇∶碳酸二甲酯=2.4∶1(摩尔比),反应时间6 h,反应温度170℃。实验室和50 L中试产品收率均大于97%。产品应用于SL 5W-30和SL 5W-40汽油机油中,在低温性能方面表现良好。碳酸高碳(C16~C20)二烷基酯产品结构用红外光谱和质谱进行了表征。 相似文献
8.
采用共沉淀法制备了复合氧化物LaMgAlO催化剂,采用XRD和DTA手段对催化剂进行了表征,并考察了LaMgAlO催化剂对丙醇与碳酸二甲酯(DMC)酯交换合成碳酸二丙酯(DPC)反应的性能。实验结果表明,当复合氧化物为n(La)∶n(Mg)∶n(Al)=0.7∶3∶1(即0.7 LaMgAlO催化剂具有水滑石结构)时,在650℃下焙烧5 h制备的0.7 LaMgAlO催化剂对合成DPC的酯交换反应的活性最高;最佳的工艺条件为:反应温度90℃、n(丙醇)∶n(DMC)=3、催化剂用量3.0%(w)、反应时间6 h,在此条件下,DMC的转化率达到97.4%,DPC的选择性达到95.4%。 相似文献
9.
采用沉淀-浸渍法制备了Ti O2/Si O2催化剂,并将其用于催化碳酸二甲酯(DMC)与碳酸二苯酯(DPC)逆歧化制备甲基苯基碳酸酯(MPC)。研究了载体种类、Ti O2负载量、反应温度、反应时间、原料配比和催化剂用量等因素对逆歧化反应的影响,并对催化剂进行了XRD,BET,NH3-TPD等技术的表征。实验结果表明,Ti O2在载体Si O2表面分散较好,催化剂具有较大的比表面积和孔体积,利于反应物和产物的扩散,催化性能较好。当Ti O2负载量为15%(w)时,催化剂表面的弱酸量最多,催化活性最高。在DPC用量0.35 mol、n(DMC)∶n(DPC)=3、15%Ti O2/Si O2催化剂用量5%(相对于DPC质量)、反应温度160℃、反应时间2 h、搅拌转速500 r/min的最佳工艺条件下,DPC转化率和MPC收率分别为81.5%和78.6%。 相似文献
10.
在连续流动气固相反应条件下,对碳酸二甲酯(DMC)与正丙醇酯交换合成碳酸甲丙酯(MPC)的反应进行了研究。研究结果表明,使用负载型氧化物TiO2/Al2O3为催化剂,在反应温度130℃、反应压力1.1MPa、原料配比n(DMC)∶n(正丙醇)=0.5、气态空速360h-1的条件下,DMC的转化率为57.27%,目标产物MPC的选择性为88.07%,收率为50.43%。随着反应温度的升高,DMC的转化率增加,但同时由于甲醚、甲丙醚和丙醚等副产物的生成,使目标产物MPC的选择性降低;反应压力的改变对合成反应的影响不显著;催化剂颗粒控制在20~40目。当气态空速为360h-1时,外扩散影响已基本消除,可获得最高的MPC收率,但是随着空速的继续增加,由于接触时间缩短,DMC的转化率和MPC的收率趋于减小。 相似文献
11.
12.
14.
负载型双功能催化剂作用下的碳酸二甲酯直接合成 总被引:8,自引:3,他引:8
采用浸渍法制备了双组分负载型催化剂 ,研究了催化剂对二氧化碳、环氧丙烷和甲醇直接合成碳酸二甲酯反应的催化性能 ,考察了反应温度、负载量、反应压力以及载体粒径对碳酸二甲酯收率的影响。结果表明 ,以ZnO为载体的双组分催化剂具有良好的催化活性 ;最佳反应温度为 16 0℃ ;活性组分负载量在 10 %时碳酸二甲酯收率最高 ;压力的影响并不明显 ;载体粒径的减小有助于碳酸二甲酯的生成。 相似文献
15.
采用Benson和Joback基团贡献法对碳酸二甲酯(DMC)与乙醇酯交换合成碳酸二乙酯(DEC)反应体系进行了热力学分析,计算了反应的焓变、熵变、吉布斯自由能变及平衡常数。结果表明,该酯交换反应为放热反应,升高温度不利于DEC的合成。与碳酸甲乙酯(EMC)歧化反应的平衡常数相比,EMC与乙醇酯交换反应的平衡常数较大,反应更易进行。 相似文献
16.
17.
18.
19.
碳酸二甲酯和苯酚酯交换合成碳酸二苯酯的研究进展 总被引:5,自引:4,他引:5
综述了碳酸二甲酯和苯酚酯交换合成碳酸二苯酯的反应原理及热力学,并对近年来该反应的催化剂体系进行了较为系统的概述,包括均相催化剂体系(碱或碱金属化合物、Lew is酸、锡和钛的有机化合物、三氟甲基磺酸钐等)和多相催化剂体系(各种金属氧化物、水滑石等);在此基础上,对以锡、钛以及氧化物作催化剂时的反应机理研究进行了评述;认为开发有机锡、有机钛配合物催化剂以及将其固载化是碳酸二甲酯与苯酚酯交换反应合成碳酸二苯酯催化剂研究的重要方向。 相似文献
20.
甲醇氧化羰化合成DMC铜系催化剂的研究 总被引:3,自引:0,他引:3
用CuCl2或CuCl作催化剂,CH3OH、O2、CO为原料,合成碳酸二甲酯(DMC)。研究了催化剂及其用量、氧气浓度、反应压力以及含氮助剂对反应的影响。结果表明,当CuCl2量达到0.1g/ml甲醇,CuCl量达到0.04g/ml甲醇后,增加催化剂对DMC的生成速度影响不大;一次性加入氧气浓度超过10%的原料气,DMC的生成速率下降;DMC的生成速度随系统总压力升高而加快;加入有机含氮助剂可使反应速度加快,同时可提高DMC的选择性。 相似文献