首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
This paper presents a computational fluid dynamics (CFD)‐based modeling strategy for the prediction of cable tray fire development. The methodology is applied to a set of five horizontal trays (each 2.4‐m long and 0.45‐m wide) that are positioned with a 0.3‐m vertical spacing and set up against an insulated wall. Each tray contains 49 power PVC cables. Ignition is performed with an 80‐kW propane burner centrally positioned at 0.2 m below the lowest tray. A collection of four groups of cables per tray (made of one homogeneous material) is considered. These groups are separated by longitudinal slots of air to “mimic” their relatively “loose arrangement.” The thermal properties and surface ignition temperature are estimated from cone calorimetry (CC). When the ignition temperature is reached, the cables burn according to a prescribed heat release rate per unit area (HRRPUA) profile obtained from CC, as is or in a modified shape. A realistic flame pattern is predicted. Furthermore, using only data from CC, the peak HRR is underpredicted, and the time to reach the peak is overpredicted. The proposed “design” for the modified HRRPUA CC‐profile significantly improves the results.  相似文献   

2.
    
We combine reduced order modeling and system identification to reconstruct the temporal evolution of large-scale vortical structures behind the blades of a Rushton impeller. We performed direct numerical simulations at Reynolds number 600 and employed proper orthogonal decomposition (POD) to extract the dominant modes and their temporal coefficients. We then applied the identification algorithm, N4SID, to construct an estimator that captures the relation between the velocity signals at sensor points (input) and the POD coefficients (output). We show that the first pair of modes can be very well reconstructed using the velocity time signal from even a single sensor point. A larger number of points improves accuracy and robustness and also leads to better reconstruction for the second pair of POD modes. Application of the estimator derived at Re = 600 to the flows at Re = 500 and 700 shows that it is robust with respect to changes in operating conditions.  相似文献   

3.
    
Stirred vessels are used to facilitate mixing processes across a wide range of industries. Their performance can often be predicted with certain characteristics of the agitator, like the dimensionless power and flow numbers. Since there exists a large number of agitator designs and geometries, it is desirable to be able to predict these characteristics using models rather than rely on previous experimental data. In this study, we use an angular momentum balance combined with computational fluid dynamics to correlate the power, flow, and mixer geometry across a wide range of down-pumping pitched blade turbine geometries. The models developed from the results allow us to predict the power from the flow (or vice versa) for the geometries investigated. We tested two methods for the measurement of the flow rate and found that the choice of measurement method can affect the relationship between the power, flow, and impeller geometry.  相似文献   

4.
Due to computational time limitations, fully resolved simulations using the two‐fluid model of the flow inside industrial‐scale fluidized beds are unaffordable. The filtered approach is used to account for the effect of small unresolved scales on the large resolved scales computed with “coarse” realistic meshes. Using a fully resolved simulation, we highlight the need to account for a subgrid drift velocity to obtain the correct bed expansion when using coarse meshes. This velocity, defined as the difference between the filtered gas velocity seen by the particle phase and the resolved filtered gas velocity, modify the effective relative velocity appearing in the drag law. We close it as a correction of the resolved relative velocity depending on the filtered particle concentration and the filter size. A dynamic procedure is used to adjust a tuning parameter. Bed expansion obtained with a posteriori test on coarse‐grid simulations matches well to fully resolved simulations. © 2011 American Institute of Chemical Engineers AIChE J, 2012  相似文献   

5.
A kind of new modified computational fluid dynamics‐discrete element method (CFD‐DEM) method was founded by combining CFD based on unstructured mesh and DEM. The turbulent dense gas–solid two phase flow and the heat transfer in the equipment with complex geometry can be simulated by the programs based on the new method when the k‐ε turbulence model and the multiway coupling heat transfer model among particles, walls and gas were employed. The new CFD‐DEM coupling method that combining k‐ε turbulence model and heat transfer model, was employed to simulate the flow and the heat transfer behaviors in the fluidized bed with an immersed tube. The microscale mechanism of heat transfer in the fluidized bed was explored by the simulation results and the critical factors that influence the heat transfer between the tube and the bed were discussed. The profiles of average solids fraction and heat transfer coefficient between gas‐tube and particle‐tube around the tube were obtained and the influences of fluidization parameters such as gas velocity and particle diameter on the transfer coefficient were explored by simulations. The computational results agree well with the experiment, which shows that the new CFD‐DEM method is feasible and accurate for the simulation of complex gas–solid flow with heat transfer. And this will improve the farther simulation study of the gas–solid two phase flow with chemical reactions in the fluidized bed. © 2009 American Institute of Chemical Engineers AIChE J, 2009  相似文献   

6.
A new model for mechanically induced red blood cell damage is presented. Incorporating biophysical insight at multiple length scales, the model couples flow‐induced deformation of the cell membrane (~10 µm) to membrane permeabilization and hemoglobin transport (~100 nm). We estimate hemolysis in macroscopic (above ~1 mm) 2‐D inhomogeneous blood flow by computational fluid dynamics (CFD) and compare results with literature models. Simulations predict the effects of local flow field on RBC damage, due to the combined contribution of membrane permeabilization and hemoglobin transport. The multiscale approach developed here lays a foundation for a predictive tool for the optimization of hydrodynamic and hematologic design of cardiovascular prostheses and blood purification devices. © 2014 American Institute of Chemical Engineers AIChE J, 60: 1509–1516, 2014  相似文献   

7.
Our previous analytical solution gives sag advancing implicitly as , or for , sag advances with the cube root of time for a thin wide rectangular Newtonian isothermal sheet. This previous analytical work applies to sheets that are pinned along just two edges, and not all the way around. Corresponding sagometer experimental results confirmed this cube root relation. This work compares the prediction with measured commercial thermoforming behavior on rectangular sheets that are, of course, pinned all the way around. Then sag parallel superposition is used to extend for a sheet pinned all the way around. We evaluate sag parallel superposition using a finite element method (FEM) employing ANSYS Polyflow. The equation assumes sagging sheet cylindricity, and from our FEM we find that this assumption is reliable when . We compare sag measured in commercial thermoforming, using high‐impact polystyrene (HIPS) sheets that are pinned all the way around, by extending with parallel superposition. It is found that the time evolution of the commercial sag follows nearly exactly the same shape as the isothermal prediction. We measure sag runaway, and although the isothermal analysis , predicts the sag runaway time accurately, our isothermal theory overpredicts the amount of sag in the nonisothermal commercial operation by as much as a factor of 14. It is also shown how to use sheet sag measurements from commercial thermoforming to deduce the Newtonian viscosity of a thermoforming resin at a temperature that is above its softening point. © 2013 American Institute of Chemical Engineers AIChE J, 60: 1529–1535, 2014  相似文献   

8.
稀土是不可再生的重要战略资源,在高新技术材料中具有不可替代的战略作用。混合澄清槽具有操作稳定性好、级效率高、结构简单、易放大等优点,是稀土分离工业中使用最为广泛的萃取设备。本文概述并分析了应用于混合澄清槽模拟的数值模型,结果表明Eulerian-Eulerian多相流模型、k-?湍流模型和多参考系模型因使用简便、精度可靠、对计算机性能要求不高而被当前的研究者们大量采用。此外,针对混合澄清槽抽吸性能、混合特性和澄清特性三大重要性能指标,分别总结了影响各性能的主要参数和调控方法,分析表明在抽吸性能和混合时间方面的研究较为成熟,在液滴聚并破碎数值研究、澄清方式和改进等方面的研究相对薄弱,构建高精度网格、采用更细致分析流场时空发展趋势的大涡模拟和引入种群平衡模型等方法将是下一步深入研究混合澄清槽的重要方向。  相似文献   

9.
    
The science of understanding how fires burn and how heat smoke and gases are generated and affect people has progressed substantially in the last half century. The principles of facility design for life safety in fires have reached a degree of maturity. Standards and code provisions for fire detection, suppression and control have become the norm. Real‐scale (or nearly real‐scale) test methods for the flammability of furnishings and interior finish have been established. In addition, some tests have been developed that measure the results of the burning of a small sample from the finished product. Yet, while there have been numerous small‐scale apparatuses developed for assessing the generation of heat, toxic gases, and visible or corrosive smoke, these facets of life and property safety have not found widespread inclusion in building and fire codes. There has been an invigorated effort in ISO TC92 SC3, Fire Threat to People and the Environment, to develop a coherent and comprehensive set of fire safety standards and guidance documents for life safety. Smaller efforts are ongoing within some national and regional standards bodies. In November 2008, experts in this field gathered at The Royal Society in London to hear papers that captured the state of the art and to discuss where we might go from here. This paper summarizes the papers and the discussion from that meeting. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
11.
A coupled simulation of the flue gas and process gas side of the convection section of a steam cracker is performed, making use of the CFD software package Fluent. A detailed overview of the operating mode of the different heat exchangers suspended in the convection section is obtained. The asymmetric inlet flow field of the flue gas in the convection section, and the radiation from the convection section walls leads to large differences in outlet temperatures of the tubes located in the same row. The flow fields and temperature fields in the tubes of a single heat exchanger differ significantly with e.g., outlet temperatures of the hydrocarbon‐steam mixture ranging from 820 K to 852 K. Moreover, the simulations reveal the presence of hot spots on the lowest tube row, possibly causing fouling. © 2009 American Institute of Chemical Engineers AIChE J, 2009  相似文献   

12.
Detailed measurements and computational fluid dynamics (CFD) investigation of the hydrodynamics in a bubble column containing internal features causing flow disturbances are presented for both air and helium gases. An optical needle probe has been used to measure profiles of bubble size, bubble velocity, and gas holdup at different locations across the cross section of the column. An approach combining CFD with population balances is able to represent observed multiphase flow phenomena such as the effect of the pipes to remix and redistribute the gas as well as the tendency of the gas to channel through a slit in the pipes rather than go around the pipes. The comparison of CFD simulation to experimental measurements reveal that the overall decrease in gas holdup observed when switching from air to helium gas can be explained by swarm effects, whereas the steeper decrease in the gas holdup profile across the column is due to coalescence effects. © 2018 American Institute of Chemical Engineers AIChE J, 64: 3764–3774, 2018  相似文献   

13.
Dynamic behavior of the flow field in a Reaction Injection Molding, RIM, machine mixing chamber, having dimensions typically used in industrial machines, is studied from dynamic velocity data of Laser Doppler Anemometry, LDA, measurements and Computational Fluid Dynamics, CFD, simulations with a 2D model. This study is based on the spectral analysis of the dynamic flow field data. The typical frequencies, in the reactor flow field, are identified and its values are related to the identified flow structures. The differences between the typical frequencies from experiments and simulations are observed and justified on the basis of the 2D representation of a 3D cylindrical geometry. © 2009 American Institute of Chemical Engineers AIChE J, 2009  相似文献   

14.
    
Models for gas separations with spiral-wound membranes are developed and found to exhibit good agreement with experiments performed on N2/O2 mixtures. The two-dimensional (2D) model can be accurately approximated by a one-dimensional (1D) surrogate model when the spacer widths are chosen to make the channel pressure drops small. Subsequently, the separation of propane/propylene mixtures from the recycle purge stream of a polypropylene reactor is investigated. Assuming ideal gas is found to lead to significant overestimations in membrane stage cuts (sometimes more than 10%), an extent comparable to that associated with extrapolating constant olefin permeance from a low-pressure condition. While olefin permeance can change significantly with pressure, using a constant-permeance formulation can result in a small (< 2.5%) underprediction in stage cut if the value for the permeance is taken from the feed condition. Finally, membrane properties and costs necessary for a viable separation process are discussed.  相似文献   

15.
建立U形导流板换热器和扭转流换热器全截面周期模型,利用计算流体力学(CFD)方法对两种换热器壳程性能进行数值研究。相较于扭转流换热器,U形导流板换热器的壳程压降降低45.3%~47.5%,传热系数降低9.9%~13.5%,均匀性提高2.4%~4.0%,综合性能提高4.0%~14.6%。场协同结果表明,U形导流板换热器壳程流体速度与压力梯度的协同性优于扭转流换热器,而流体速度与温度梯度的协同性不如扭转流换热器。本文利用激光多普勒测速仪(LDV)验证了模拟方法准确性和模拟结果的可靠性;分析了U形导流板结构参数及布置方式对换热器壳程压降和传热性能的影响。结果表明,U形导流板的布置角度和布置方式对性能影响显著,导流板宽度和导流板间距的影响较小。  相似文献   

16.
计算流体力学(CFD)用于求解固定几何形状设备内的流体的动量、热量和质量方程以及相关的其他方程,已成为研究化工领域中流体流动和传质的重要工具。本文概述了CFD的基本原理以及CFD在化学工程领域方面的应用,重点介绍了CFD在搅拌槽、换热器、蒸馏塔、薄膜蒸发器、燃烧等方面的应用。  相似文献   

17.
The Sabatier reaction in a testing packed bed was investigated experimentally and theoretically, and was used to convert waste carbon dioxide and hydrogen to provide needed water for closing the life‐support loop on orbit in space. A three‐dimensional model including fluid flow, gas dispersion, heat and mass transfer, and chemical reaction was developed by coupling some semi‐empirical correlated equations in chemical engineering science into computational fluid dynamics theory. Good agreements between the simulating results and experimental data for the effect of some parameters on reaction verified this model, for example, heat exchange between reactor and atmosphere, the material property of reactor, the catalyst deactivated and gas mass flux and so on. By using this model as the designing tools, an optimized packed bed is proposed. Compared with the testing packed bed, the relevant reactor length can be reduced from 220 to 150 mm with the same hydrogen conversion and lower pressure drop. © 2016 American Institute of Chemical Engineers AIChE J, 62: 2879–2892, 2016  相似文献   

18.
非对称陶瓷膜管渗透性能的CFD模拟研究   总被引:2,自引:2,他引:2  
杨钊  程景才  杨超  梁斌 《化工学报》2015,66(8):3120-3129
陶瓷膜因其化学稳定性好、机械强度大等优点得到广泛应用。计算流体力学(CFD)的快速发展使得计算模拟成为研究和优化陶瓷膜管结构性能的有效手段。为了优化非对称结构陶瓷膜管的结构和操作参数,对其渗透性能进行了CFD计算模拟。针对非对称结构陶瓷膜管的膜层和过渡层的厚度在10 μm级的特点,采用Navier-Stokes方程和Darcy定律来分别描述膜管内和膜多孔介质内的纯水流动,利用多孔介质模型描述膜管的主体支撑层,用多孔跳跃边界简化膜管的膜层和过渡层,利用Konzey-Carmen方程对膜元件各层的渗透率进行估算。计算结果与实验值吻合较好,为优化陶瓷膜管的通道结构提供了便捷的工具。  相似文献   

19.
This article describes an active mixing method for a microbioreactor that was designed, simulated, tested, and successfully implemented. By applying a varying pressure to a microchannel looping tangentially into a cylindrical microreactor an oscillating fluid flow was shown to occur. Such an oscillating fluid flow improved mixing, both by diffusion and convection. The oscillating fluid flow has a large impact on the ratio between the diffusion domain and the convection domain. A good match was obtained between experimental mixing results, computational fluid dynamics simulation results and the results of a simplified mixing model thus demonstrating the potential of simulation on improving the design of microreactors. © 2009 American Institute of Chemical Engineers AIChE J, 2009  相似文献   

20.
孙靖晨  刘海龙  王军锋  何发超 《化工进展》2021,40(12):6547-6556
在层流搅拌中,搅拌桨的周期性扰动使搅拌槽内出现封闭、孤立的环状隔离流场。隔离流场严重阻碍了搅拌介质之间的有效交换,降低了搅拌效率。本文提出外加电场以强化层流搅拌的方案,利用电流体动力学效应改变流场的对称结构,消除混合死区。试验采用平面激光诱导荧光(planner laser induced fluorescence, PLIF)技术实现了搅拌槽内流场结构的实时可视化,并通过自编程程序识别并计算出非混合区域面积百分比。结果表明,随着电场强度的增大,混合效率逐渐提升,当电场强度为1.5kV/cm时混合效率可达98%。研究建立了基于有限元法及浓度扩散模型的混合搅拌模拟平台,探究搅拌槽内部流场结构时空演变规律。通过模拟分析发现,当外加平行板电场强度达到0.5kV/cm以上时,搅拌槽内部出现明显的二次涡流。二次涡流的出现与径向混合相互作用从而不断削弱隔离流场。在电场强度不变的条件下,外加周期性电场可以进一步提高搅拌效率,电场强度1kV/cm条件下的外加周期性电场可以使搅拌效率提升至98%以上。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号