首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ziqing Yu  Aixi Zhou 《火与材料》2014,38(1):100-110
This study evaluates the effect of flame heat flux on the prediction of thermal response and fire properties of a char‐forming composite material. A simplified two‐layer flame model was developed and incorporated into a heat transfer thermal model to predict the thermal response and fire reaction characteristics of a burning material. A typical char‐forming material, E‐glass reinforced polyester composite, was used in the study. A cone calorimeter was used to measure the fire reaction characteristics of the composite. The flame heat flux in a cone calorimeter test setup was estimated using the simplified flame model. Thermal response and fire property predictions with and without the effect of flame heat flux were compared with experimental data obtained from the cone calorimeter tests. Results showed that the average flame heat flux of the composite in a cone calorimeter was 19.1 ± 6 kW/m² from model predictions. The flame had a significant effect on the thermal response and fire properties of the composite around the first heat release peak but the effect decreased rapidly afterwards. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
The ignition, flaming and smoldering combustion of low‐density polyimide foam have been studied using a cone calorimeter. Low‐density polyimide foam exhibits a high ignition resistance. The minimum heat flux for the ignition of flaming combustion ranges from 48 to 54 kW/m2. This minimum heat flux also indicates the heat flux for transition from smoldering to flaming combustion. The flaming combustion results show that the heat release rate of low‐density polyimide foam is very low even at a high incident heat flux of 75 kW/m2. The smoldering combustion results show that the smoldering of low‐density polyimide foam becomes significant when the incident heat flux is greater than 30 kW/m2. The smoldering combustion of low‐density polyimide foam cannot be self‐sustaining when the external heat source is removed. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

3.
Two test methods for measuring the heat release rate, HRR have been compared on fabric composites used for aircraft interior materials as side‐wall panels. These methods are based on the principles of direct measurement of the convective and radiant heat by thermopiles using an Ohio State University (OSU) calorimeter, and oxygen consumption using a cone calorimeter. It has been observed when tested by standard procedures, cone results at 35 kW/m2 incident heat flux do not correlate with OSU results at the same heat flux. This is because in the cone calorimeter, the sample is mounted horizontally whereas the OSU calorimetric method requires vertical sampling with exposure to a vertical radiant panel. A further difference between the two techniques is the ignition source—in the cone it is spark ignition, whereas in the OSU it is flame ignition; hence, samples in the OSU calorimeter ignite more easily compared to those in the cone under the same incident heat fluxes. However, in this paper we demonstrate that cone calorimetric exposure at 50 kW/m2 heat flux gives similar peak heat release results as the 35 kW/m2 heat flux of OSU calorimeter, but significantly different average and total heat release values over a 2 min period. The performance differences associated with these two techniques are also discussed. Moreover, the effects of structure, i.e. type of fibres used in warp/weft direction and design of fabric are also analysed with respect to heat release behaviour and their correlation discussed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
于宝刚 《中国塑料》2010,24(3):55-59
在50 kW/m2辐射功率下,利用锥形量热仪研究了氢氧化铝、卤系阻燃剂、氮系阻燃剂和磷系阻燃剂阻燃聚氨酯泡沫(PUF)的阻燃特性,获得了点燃时间、最大热释放速率、总热释放、比消光面积及质量损失速度等参数。结果表明,将热释放速率、燃烧总释放热和烟气释放量作为材料阻燃性能好坏的评价指标,阻燃剂聚磷酸铵(APP)和三聚氰胺磷酸盐(MP)是PUF的理想阻燃剂。  相似文献   

5.
This paper applies a unique integrated approach to determine the flammability properties of a composite material (epoxy with carbon fibre) and compares its fire behaviour at two different thicknesses (2.1 and 4.2 mm) by performing small scale (thermo‐gravimetric analysis (TGA)/Fourier transform infrared radiation) and meso‐scale tests (cone calorimeter). For small‐scale tests, experiments were conducted in nitrogen using TGA coupled to gas analysis by Fourier transform infrared radiation. These results allow the determination of thermal stability, main degradation temperature and main gaseous emissions released during the thermal degradation. For meso‐scale tests, experiments were carried out using a cone calorimeter with sample dimensions of 100 × 100 mm at five heat fluxes (30, 40, 50, 60 and 70 kW/m2). The results show that the ignition time increases with an increase in the thickness of the material. Relative hazard classification of the fire performance of the current composites has also been compared with other materials using parameters obtained elsewhere. In addition, the effective ignition, thermal and pyrolysis properties obtained from the ignition and mass loss rate experiments for the 4.2‐mm thick samples were used in a numerical model for pyrolysis to predict well ignition times, back‐surface temperatures and mass pyrolysis rates for all heat fluxes as well as for the 2.1‐mm thick samples. Note that the ignition temperature obtained in the cone agrees with the main degradation temperature in the TGA. The flammability properties deduced here can be used to predict the heat release rate for real fire situations using CFD modelling. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
Ning Tian  Aixi Zhou 《火与材料》2014,38(3):356-380
This study presents a simplified theoretical model to predict the ignition of FRP composites of general thermal thickness (GTT) subjected to one‐sided heating. A simplified GTT heat transfer model to predict the surface temperature of GTT composite panels was developed, and the exposed surface temperature was used as ignition criterion. To validate the GTT model, intermediate scale calorimeter fire tests of E‐glass fiber reinforced polyester composite panels at three heat flux levels were performed to obtain intermediate‐scale fire testing data in a controlled condition with well‐defined thermal boundary conditions. The GTT model was also verified by using results from finite element modeling predictions. This model can be used to estimate the surface temperature increase, time‐to‐ignition, and mass loss of FRP composites for fire safety design and analysis. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
Many fatal residential fires started from burning upholstered furniture, and so upholstered furniture fire has been studied rather extensively in developed countries. As many upholstered furniture were made in China, the hidden fire risk should be studied more. In this paper, full‐scale experiments on the burning of upholstered furniture manufactured in China were conducted and analyzed. The oxygen consumption method was used to measure the heat release rate in a room calorimeter. An ignition source of a 20‐kW gasoline pool fire of 0.2‐m diameter was used to test square foam cushions and 4‐seater sofas. A model of heat release rate predicting upholstered furniture fire in a room was developed on the basis of earlier Swedish works. Results were then used to justify the application of the Combustion Behaviour of Upholstered Furniture model to predict the heat release rate of furniture manufactured in China. The numerical values of key parameters in the model were determined. It is proposed to build up a database that can be used to model heat release rates upon burning furniture. Detailed procedures are illustrated in this paper.  相似文献   

8.
The materials and products used in passenger trains may not be the first ignited element, but during the fire development, these materials, especially ceiling linings and wall coverings, contribute significantly to the fire growth. The fire safety requirements in passenger trains consist mainly of bench‐scale tests, with particular focus on the sample geometry, position and fire exposition. When this information is extrapolated to real end use conditions limitations appear. In this paper, a discussion of the use of fire dynamics simulator model and heat release rate experiments in cone calorimeter (bench‐scale test) is presented in order to represent the fire development in a passenger train compartment. For the study, two fire scenarios were selected: (1) the single burning item SBI test (modified) and (2) a passenger train compartment. Initially, the limitations of the assumptions and hypothesis made when producing the model were analyzed and the research team carried out a sensitivity study of the model results considering different grid sizes. In order to validate the model, both bench‐ and full‐scale fire tests were considered based on the results provided by the European research program FIRESTARR. The limitations and uncertainties in the results demonstrate the importance of two basic factors: the incident heat flux in the cone calorimeter tests and the prescribed ignition temperature. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
Agaric, a kind of important combustible material in the fire of Hengyang merchant's building, was investigated using different experiment equipments. Its degradation and pyrolysis behavior were studied by means of thermogravimetric and kinetic analysis and pyrolysis gas chromatography–mass spectroscopy analysis. External radiation heat and internal heat were used to ignite the agaric. For external radiation ignition, a series of bench‐scale fire tests were done in cone calorimeter in accordance with ISO 5660. As for the internal heat ignition, a fire test was carried out in a full‐scale room in accordance with ISO 9705. Multi‐parameter measurement, including heat release rate (HRR), mass loss rate (MLR), temperature field and species concentration, has been accomplished. Meanwhile, the process of a full‐scale fire test was numerically simulated. The computational results were consistent with experiment data, which will lay down a good foundation for further study in fire reconstruction of the whole fire. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
Of concern to regulators and fire safety engineers is how flexible polyurethane foam drips and flows during burning. Specifically, flexible polyurethane foam forms a burning ‘pool’ of liquid as the foam decomposes, which can lead to accelerated flashover events. To fully study this phenomenon where the ‘pool fire’ accelerates heat release, large‐scale tests like the furniture calorimeter (American Society of Testing and Materials (ASTM) E1537) are used, and no small‐scale technique exists. In this paper, we present our work in developing a new sample holder that works with a bench‐scale heat release test, the cone calorimeter (ASTM E1354). The holder was built upon designs developed by the National Institute of Standards and Technology, which placed the foam in a cage in a vertical orientation during cone calorimeter testing. In this paper, we show the schematics for this test apparatus, as well as results obtained with this apparatus on four different flexible foams (shape memory and high‐density foam, flame retarded and non‐flame retarded). We compare the results from the vertical testing with that obtained via traditional horizontal ASTM E1354 testing. The advantages and disadvantages of this new apparatus are discussed in this paper. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
There is little consensus within the fire science community on interpretation of cone calorimeter data, but there is a significant need to screen new flammability modified materials using the cone calorimeter. This article is the result of several discussions aiming to provide guidance in the use and interpretation of cone calorimetry for those directly involved with such measurements. This guidance is essentially empirical, and is not intended to replace the comprehensive scientific studies that already exist. The guidance discusses the fire scenario with respect to applied heat flux, length scale, temperature, ventilation, anaerobic pyrolysis and set‐up represented by the cone calorimeter. The fire properties measured in the cone calorimeter are discussed, including heat release rate and its peak, the mass loss and char yield, effective heat of combustion and combustion efficiency, time to ignition and CO and smoke production together with deduced quantities such as FIGRA and MARHE. Special comments are made on the use of the cone calorimeter relating to sample thickness, textiles, foams and intumescent materials, and the distance of the cone heater from the sample surface. Finally, the relationship between cone calorimetry data and other tests is discussed. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
The rapid mass calorimeter based on reduced‐size specimens is proposed for accelerated fire testing and put up for discussion, particularly for flame retarded polymeric materials. A mass loss calorimeter is combined with a semiautomatic sample changer. Experiments on specimens of reduced size were conducted on poly(methyl methacrylate), poly(propylene), polyamide 66, poly(ether ether ketone), and pine sapwood square samples with edge lengths of 100, 75, 50, 25, 20, and 10 mm. Specimens of 20 × 20 mm2 were selected to achieve a crucial reduction in specimen size and a measuring protocol developed. A total of 71 different polymeric materials were investigated in the rapid mass calorimeter and cone calorimeter for comparison and several materials with different heat release rate characteristics in the pyrolysis combustion flow calorimeter to test this additional screening method as well. The important fire properties obtained in the rapid mass calorimeter show reasonable correlation with the cone calorimeter results but also with the oxygen index. All in all, the rapid mass calorimeter produces reliable and meaningful results and, despite acceleration and size reduction, still allows for a certain degree of burning behavior interpretation. Material savings of 96% and time savings of around 60%‐70% are achieved compared to measure cone calorimeter.  相似文献   

13.
Controlled‐atmosphere cone calorimeter is an interesting test method to study at the same time the effect of oxygen concentration and radiant heat flux on materials' fire behaviour and gas release. However, measurements in an extended range for these two variables can be tedious. To optimize the experimental measurement, this paper proposes a methodology based on the Doehlert design. The Doehlert method allows significant optimization of the number of tests. The optimization of measurement response is then accomplished using polynomial approximations to establish fire behaviour constitutive. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
利用锥形量热仪对硬质聚氨酯泡沫(RP UF)的燃烧特性进行了研究.通过对RP UF燃烧过程中的热释放速率、热释放总量、烟生成速率和总产烟量等进行系统性测试,讨论了聚醚多元醇、聚酯多元醇以及异氰酸酯指数(R值)对RP UF热危险性和烟气危险性的影响.结果表明,聚酯多元醇替代聚醚多元醇制备的RP UF燃烧过程中的热释放速率...  相似文献   

15.
The use of polymeric building materials has been grown in many countries of Middle East in recent years. However, there are only a few fire testing laboratories in this region. Therefore, development of a method for controlling the reaction to fire of materials with bench scale tests is necessary. Providing a framework for classification of thermal fire hazard of materials based on bench scale heat release rate results was attempted. The fire behavior of 10 polymeric building materials was tested with cone calorimeter. The relationship between reaction to fire variables and physical properties of tested samples was examined. The thermal fire hazards of materials were assessed using methods presented by different researchers and with Conetools software. The results revealed that time to ignition, peak rate of heat release, and total heat release are essential variables for determining the fire hazard of materials. A classification method is proposed, which can be used in building codes in countries where the full‐scale test facilities are not available. The method also can be used for quality control purpose and evaluation of fire behavior of materials in bench scale by manufacturers. An example of potential requirements for interior finishes for some occupancy types is also presented. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
In this work, cone calorimeter tests were conducted to investigate fire properties of interior materials (floor covering [FC], aluminum plate covered with paint [APCP], light diffuser [LD], and gel coat [GC]) used in low‐floor light‐rail trains. Ignition time (tig) of each material decreases with the increase of radiative heat flux. The decreasing order of the four samples by ignition time under the same radiative heat flux is LD > APCP > FC > GC. The heat release rate (HRR), peak value of HRR (PHRR), time from ignition to PHRR (tp), fire growth rate index (FIGRA), and fire growth index (FGI) rise with the increasing radiative heat flux. For the FC, LD, and GC, single HRR peak is observed in the HRR history while three peaks are observed for APCP. For PHRR, LD > FC > APCP > GC, while for tp, GC < FC < APCP < LD. Under most conditions, the FIGRA and FGI of the FC is the highest among the four materials. Results of this work are beneficial to evaluate fire hazard of low‐floor light‐rail train and determine the emphasis of fire prevention.  相似文献   

17.
Yong Wang  Jun Zhang 《火与材料》2012,36(3):231-240
Small‐scale fire tests including the Underwriters Laboratories 94 (UL94) vertical burning test and the cone calorimeter test are widely used. In this paper, the ignition times of materials heated by the conical heater of a cone calorimeter and the UL94 flame were measured. It was found that for polymer bars heated by the UL94 flame, the ignition time is relatively short and increases with the specimen thickness. But the contribution of the specimen thickness to the delay of the ignition time is limited. The intrinsic properties of materials play a more important role in the ignition time than the specimen thickness. In addition, respectively corresponding to one‐dimensional, two‐dimensional, and three‐dimensional heat transfer, three heating modes of the UL94 flame were presented and compared with the conical heater. It was found that whether the heat source is the conical heater or the UL94 flame, the ignition time depends on the heat flux and the multidimensional heat transfer. The ignition time decreases with the increasing heat flux, and the magnitude order of the ignition time might drop when the heating mode changes from one‐dimensional to multidimensional heat transfer. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
This paper presents an experimental and numerical investigation of the effects of intumescent coating and nanoparticles on the burning behaviors of flaxboard. Virgin flaxboard samples and those coated with intumescent coatings (with/without nanoparticles) were tested in the cone calorimeter and single burning item (SBI) test. Experimental results show a significant increase in the time to ignition and also a reduction in the heat release rate by the intumescent coatings. In order to explain quantitatively and predict the effects of the intumescent coating, a global fractional factor (the ratio of the heat flux at the interface of the intumescent surface and the char layer of flaxboard to the surface heat flux when there is no intumescent coating layer) was introduced based on analytical solutions for charring materials. The fractional factor for the intumescent coatings was found by comparing predictions to the experimental data in the cone calorimeter test and, subsequently, was incorporated in an upward flame spread model, along with the ignition and thermal properties deduced from the ignition tests, to predict the burning rates in the SBI tests. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
Models are available to predict the fire‐resistance ratings of wood‐frame assemblies protected by gypsum board. These models have been developed to predict the performance of assemblies exposed to a standard fire test in which temperatures increase monotonically. In an ongoing effort to model the fire resistance of light‐frame wood floor assemblies, in this study, a number of improvements over past heat transfer models have been made in an attempt to simulate assembly performance in any arbitrary fire exposure. For this purpose, the heat transfer analysis has been coupled with a mass transfer analysis. The calcination of gypsum board and pyrolysis of wood are now modelled using an Arrhenius expression. In order to evaluate the accuracy of the model, a series of cone calorimeter experiments have been conducted in an effort to generate experimental data under well‐defined boundary conditions. Comparisons between test results and the predictions from a one‐dimensional heat and mass transfer analysis are encouraging with excellent agreement in predicting the point at which gypsum board is fully calcinated. A lack of material property data, particularly the permeability of gypsum board, remains a limiting factor in further improvement of the accuracy of the model. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
Chlorosilanes are silanes containing the Si‐Cl functional group and SiH‐containing siloxanes are siloxanes containing the Si‐H functional group. Some chlorosilanes and SiH‐containing siloxanes present potentially high fire or explosion hazards during handling, storage, transport and process operations. Cone calorimeter tests have been used to study the burning behaviors of selected chlorosilanes and SiH‐containing siloxanes at various incident heat fluxes to simulate pool fire burning. The peak heat release rate of a silicon intermediate obtained from the cone calorimeter at 15 kW/m2 incident heat flux was very close to that measured by a relatively large‐scale field test. The flammability of monochlorosilanes was similar to that of organic hydrocarbons having comparable volatility. The flammability of chlorosilanes descends in the order of monochlorosilanes, dichlorosilanes and trichlorosilanes. SiH‐containing siloxanes ignited faster than non‐SiH‐containing siloxanes because of the reactive silicon‐hydrogen linkages. The ignition of SiH‐containing siloxanes was much more violent than the ignition of non‐SiH‐containing siloxanes. The SiH‐containing siloxanes exhibited a lower peak heat release rate, less total heat released and a lower peak smoke extinction coefficient compared with non‐SiH‐containing siloxanes having comparable volatility. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号