首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper reports the effect of elevated temperature exposures, up to 1200°C , on the residual compressive strengths of alkali‐activated slag concrete (AASC) activated by sodium silicate and hydrated lime; such temperatures can occur in a fire. The strength performance of AASC in the temperature range of 400–800°C was similar to ordinary Portland cement concrete and blended slag cement concrete, despite the finding that the AASC did not contain Ca(OH)2 , which contributes to the strength deterioration at elevated temperatures for Ordinary Portland Cement and blended slag cement concretes. Dilatometry studies showed that the alkali‐activated slag (AAS) paste had significantly higher thermal shrinkage than the other pastes while the basalt aggregate gradually expanded. This led to a higher thermal incompatibility between the AAS paste and aggregate compared with the other concretes. This is likely to be the governing factor behind the strength loss of AASC at elevated temperatures. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
This paper presents the compressive strength of fly‐ash‐based geopolymer concretes at elevated temperatures of 200, 400, 600 and 800 °C. The source material used in the geopolymer concrete in this study is low‐calcium fly ash according to ASTM C618 class F classification and is activated by sodium silicate (Na2SiO3) and sodium hydroxide (NaOH) solutions. The effects of molarities of NaOH, coarse aggregate sizes, duration of steam curing and extra added water on the compressive strength of geopolymer concrete at elevated temperatures are also presented. The results show that the fly‐ash‐based geopolymer concretes exhibited steady loss of its original compressive strength at all elevated temperatures up to 400 °C regardless of molarities and coarse aggregate sizes. At 600 °C, all geopolymer concretes exhibited increase of compressive strength relative to 400 °C. However, it is lower than that measured at ambient temperature. Similar behaviour is also observed at 800 °C, where the compressive strength of all geopolymer concretes are lower than that at ambient temperature, with only exception of geopolymer concrete containing 10 m NaOH. The compressive strength in the latter increased at 600 and 800 °C. The geopolymer concretes containing higher molarity of NaOH solution (e.g. 13 and 16 m ) exhibit greater loss of compressive strength at 800 °C than that of 10 m NaOH. The geopolymer concrete containing smaller size coarse aggregate retains most of the original compressive strength of geopolymer concrete at elevated temperatures. The addition of extra water adversely affects the compressive strength of geopolymer concretes at all elevated temperatures. However, the extended steam curing improves the compressive strength at elevated temperatures. The Eurocode EN1994:2005 to predict the compressive strength of fly‐ash‐based geopolymer concretes at elevated temperatures agrees well with the measured values up to 400 °C. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
Abstract

Aluminosilicate type materials can be activated in alkaline environment and can produce geopolymer cements with low environmental impacts. Geopolymers are believed to provide good fire resistance so the effects of elevated temperatures on mechanical and microstructural properties of pumice based geopolymer were investigated in this study. Pumice based geopolymer was exposed to elevated temperatures of 100, 200, 300, 400, 500, 600, 700 and 800°C for 3?h. The residual strength of these specimens were determined after cooling at room temperature as well as ultrasonic pulse velocity, and the density of pumice based geopolymer pastes before and after exposing to high temperature was determined. Microstructures of these samples were investigated by Fourier transform infrared for all temperatures and SEM analyses for samples that were exposed to 200, 400, 600 and 800°C. Specimens, which were initially grey, turned whitish accompanied by the appearance of cracks as temperatures increased to 600 and 800°C. Consequently, compressive strength losses in geopolymer paste were increased with increasing temperature level. On the other hand, compressive strength of geopolymer paste was less affected by high temperature in comparison with the ordinary Portland cement. As a result of this study, it is concluded that pumice based geopolymer is useful in compressive strength losses exposed to elevated temperatures.  相似文献   

4.
Environment friendly geopolymer is a new binder which gained increased popularity due to its better mechanical properties, durability, chemical resistance, and fire resistance. This paper presents the effect of nano silica and fine silica sand on residual compressive strength of sodium and potassium based activators synthesised fly ash geopolymer at elevated temperatures. Six different series of both sodium and potassium activators synthesised geopolymer were cast using partial replacement of fly ash with 1%, 2%, and 4% nano silica and 5%, 10%, and 20% fine silica sand. The samples were heated at 200°C, 400°C, 600°C, and 800°C at a heating rate 5°C per minute, and the residual compressive strength, volumetric shrinkage, mass loss, and cracking behaviour of each series of samples are also measured in this paper. Results show that, among 3 different NS contents, the 2% nano silica by wt. exhibited the highest residual compressive strength at all temperatures in both sodium and potassium‐based activators synthetised geopolymer. The measured mass loss and volumetric shrinkage are also lowest in both geopolymers containing 2% nano silica among all nano silica contents. Results also show that although the unexposed compressive strength of potassium‐based geopolymer containing nano silica is lower than its sodium‐based counterpart, the rate of increase of residual compressive strength exposed to elevated temperatures up to 400°C of potassium‐based geopolymer containing nano silica is much higher. It is also observed that the measured residual compressive strengths of potassium based geopolymer containing nano silica exposed at all temperatures up to 800°C are higher than unexposed compressive strength, which was not the case in its sodium‐based counterpart. However, in the case of geopolymer containing fine silica sand, an opposite phenomenon is observed, and 10% fine silica sand is found to be the optimum content with some deviations. Quantitative X‐ray diffraction analysis also shows higher amorphous content in both geopolymers containing nano silica at elevated temperatures than those containing fine silica sand.  相似文献   

5.
《Ceramics International》2022,48(10):14076-14090
Environmental issues caused by glass fiber reinforced polymer (GFRP) waste have attracted much attention. The development of cost-effective recycling and reuse methods for GFRP composite wastes is therefore essential. In this study, the formulation of the GFRP waste powder replacement was set at 20–40 wt%. The geopolymer was formed by mixing GFRP powder, fly ash (FA), steel slag (SS) and ordinary Portland cement (OPC) with a sodium-based alkali activator. The effects of GFRP powder content, activator concentration, liquid to solid (L/S) ratio, and activator solution modulus on the physico-mechanical properties of geopolymer mixtures were identified. Based on the 28-day compressive strength, the optimal combination of the geopolymer mixture was determined to be 30 wt% GFRP powder content, an activator concentration of 85%, L/S of 0.65, and an activator solution modulus of 1.3. The ratios of compressive strength to flexural strength of the GFRP powder/FA-based geopolymers were considerably lower than those of the FA/steel slag-based geopolymers, which indicates that the incorporation of GFRP powder improved the geopolymer brittleness. The incorporation of 30% GFRP powder in geopolymer concrete to replace FA can enhance the compressive and flexural strengths of geopolymer concrete by 28%. After exposure to 600 °C, the flexural strength loss for geopolymer concretes containing 30 wt% GFRP powder was less than that of specimens without GFRP powder. After exposure to 900 °C, the compressive strength and flexural strength losses of geopolymer concretes containing 30 wt% GFRP powder were similar to those of specimens without GFRP powder. The developed GFRP powder/FA-based geopolymers exhibited comparable or superior physico-mechanical properties to those of the FA-based geopolymers, and thus offer a high application potential as building construction material.  相似文献   

6.
The strength and transient creep of geopolymer and ordinary Portland cement (OPC)-based material (paste and concrete) were compared at elevated temperatures up to 550 °C. The strength properties were determined using an unstressed hot strength test and unstressed residual strength test for paste and concrete, respectively. At 550 °C, compared with the original strength, the strength of geopolymer was increased by 192% while the strength of OPC paste showed little change. However, after exposure to 550 °C, the residual strength percentage of both geopolymer and OPC concretes was similar. Transient creep data show that geopolymer had little change in transitional thermal creep (TTc) between 250 and 550 °C while OPC paste developed significant TTc in this temperature range. In comparison with OPC concrete, a higher strength loss of geopolymer concrete is thus believed to be due to the absence of TTc to accommodate nonuniform deformation during thermal exposure.  相似文献   

7.
Secondary lead slag, a waste product from battery smelting using CaCO3 as flux, has been investigated for its use as an admixture and/or aggregate in the production of concrete blocks. The slag was added as partial replacements of cement and/or aggregate. The results revealed that the oxide components of the slag were similar to those of ordinary Portland cement (OPC). The CaO content in the slag is 6.2 times less than that in OPC, while its iron content, as FeO, is 15.1 times higher. Interestingly, it also possesses magnetic property. All samples exhibited higher compressive strengths than that of the sample without slag (STD) which increased with increasing the slag contents and ages. The highest compressive strength was of the sample containing 20% slag as cement substituent and 100% slag as aggregate replacement owing to 259% of that of the STD at 60 days. All samples showed higher water absorption than that of the STD. The higher the slag contents, the more the water absorption. The absorption was, as expected, decreased with ages. Magnetic property of the slag plays an important role in the properties of the concrete blocks. For environmental concern, leachability of lead (Pb) from all samples was also carried out.  相似文献   

8.
Osman Gencel 《火与材料》2012,36(3):217-230
Aggregates typically constitute 70 to 80 wt% of concrete, and therefore their type, size, and structure play an essential role in modifying the properties of concrete. When concrete is used for shielding nuclear applications, temperature is also a key factor. This study investigates the effects of elevated temperatures (25 °C, 200 °C, 400 °C, 600 °C, and 800 °C), heating durations (1, 2, and 3 h), and cooling regimes (air, and water cooling) on mechanical properties of concrete containing different proportions of hematite. A sample of plain concrete was produced for comparison purposes by using river sand, crushed sand, and crushed aggregates. Replacement ratios of 15%, 30%, 45%, and 60% were used for hematite aggregates. The cement content and water–cement ratio were 450 kg/m3 and 0.38, respectively. Slump values of fresh concretes as well as unit weight, compressive strength, flexural strength, splitting tensile strength, and elasticity modulus values of hardened concrete were determined. The addition of hematite into concrete seems to improve its mechanical properties, and hematite concretes have better thermal stability at elevated temperatures than plain concrete does. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
The growth of demand for concrete raises concerns about the consumption of natural resources and ordinary Portland cement. Geopolymer composites show promise as a sustainable alternative for conventional cement concrete. Considering the wide range of potential geopolymer composites applications (including suitability for transportation infrastructure, underwater applications, repair and rehabilitation of structures as well as recent developments in 3D printing), the desired fresh and mechanical properties of the geopolymer composite may vary between applications: for example, rapid setting can be a merit for certain applications and a demerit for others. Therefore, the desired fresh and mechanical properties (e.g., workability, setting time, compressive strength, etc.) can be controlled for a given geopolymer source material through its partial substitution by natural or by-product materials. Recognizing the critical role of various replacement materials in enhancing the potential applications of geopolymer composites, the present review was undertaken to quantify and understand the effect of partial replacement by fly ash, metakaolin, kaolin, red mud, slag, ordinary Portland cement, and silica fume on the setting time, workability, compressive strength and flexural strength of various source materials addressed in the literature. The review also provides insights into research gaps in the field to promote future research.  相似文献   

10.
赤泥/粉煤灰免烧矿物聚合物材料的制备和强度   总被引:3,自引:1,他引:2       下载免费PDF全文
以赤泥、粉煤灰为主要原料,采用水玻璃作为碱激发剂,制备出一种具有较高早期强度的免烧成矿物聚合物胶凝材料.通过实验初步探讨了碱激发剂对该矿物聚合物强度发展的影响.利用合适配比的赤泥/粉煤灰胶凝材料作为基质原料,用细沙作骨料,制成了一种赤泥/粉煤灰基矿物聚合物免烧材料.当赤泥的加入量在60%~70%范围时,各组试样的3 d抗压强度均在10 MPa以上,符合非承重墙体建筑材料的强度MU10级要求.同时本文还对该矿物聚合物材料中胶凝反应机理进行了初步探讨.  相似文献   

11.
External Sulphate Attack on sulphate-resisting Portland cement concretes is a well-researched field. However, the effect of temperature on the performance of sulphate attack requires further attention. For this purpose, cubic mortars were made with sulphate resisting Portland cement (low C3A) and two types of sand, silica and limestone, which were then immersed in a 5% MgSO4 solution at different temperatures: 5, 20 and 50 °C, for 24 months. The deterioration of mortars due to magnesium sulphate attack was evaluated by measuring changes in mass, compressive strength, porosity and sorptivity. The X-ray diffraction was also used to determine the different mineral phases, and the pH of the conservation solutions was monitored. No damage was observed on the samples exposed at 50 °C. However, serious damage was noted on mortars made with silica sand exposed at 5 °C. Results show that high temperature improved some physical and mechanical properties and do not necessarily accelerate the degradation due to magnesium sulphate attack. Sulphate-resisting Portland cements with limited C3A content was found to be susceptible to Thaumasite Sulphate Attack. The type of sand has a remarkable effect on the performance of mortars at low temperature compared to high temperature. The samples with limestone sand showed better resistance against magnesium sulphate attacks.  相似文献   

12.
Materials recycling for sustainable concrete constructions are favoring the replacement of ordinary aggregate with waste materials, in the form of either solid particles or small void‐formers. This is the case of expanded polystyrene syntherized (EPS) concrete containing EPS particles—or beads—whose high‐temperature residual behavior is investigated in this project. Two EPS mixes and one reference mix (fc = 25–30 MPa) are tested in compression and tension after a thermal cycle at the reference temperature of 20°C, 150°C, 300°C, 500°C, and 700°C. The thermal diffusivity and the mass loss up to 700°C are investigated as well. The normalized mechanical decay of the two EPS concretes turns out to be slightly higher than that of ordinary concrete, but on the whole, the behaviors are rather close, while the thermal diffusivity of EPS concrete is definitely lower, to the advantage of its insulating capability. Damage indexes are also worked out on the basis of the elastic modulus and of the ultrasonic velocity, in order to have information on the possible void‐induced nonlinear effects. The still open problem, however, is whether the game (polystyrene recycling and mass reduction) is worth the candle (more cement and additives). Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
This study evaluates the effect of elevated temperature exposure on concrete incorporating ferronickel slag (FNS) as a replacement of natural sand. Concrete cylinders were exposed up to 800°C, and the changes in compressive strength, mass, ultrasonic pulse velocity (UPV), and microstructure were investigated. The concretes containing up to 100% FNS aggregate showed no spalling and similar cracking to that of the concrete using 100% natural sand. For exposures up to 600°C, the residual strengths of concretes containing 50% FNS were 7% to 10% smaller than the concrete with 100% sand. Use of 30% fly ash as cement replacement improved residual strength by pozzolanic reaction for exposures up to 600°C. An equation has been found from the correlation between residual strength and UPV. Therefore, UPV can be used as a nondestructive test to estimate the extent of postfire damage and residual strength of concrete incorporating FNS aggregate and fly ash.  相似文献   

14.
The compressive strength of normal strength concrete at elevated temperatures up to 700°C and the effect of cooling regimes were investigated and compared in this study. Thus, two different mixture groups with initial strengths of 20 and 35 MPa were produced by using river sand, normal aggregate and portland cement. Thirteen different temperature values were chosen from 50 to 700°C. The specimens were heated for 3 h at each temperature. After heating, concretes were cooled to room temperature either in water rapidly or in laboratory conditions gradually. The residual strengths were determined by an axial compressive strength test. Strength and unit weight losses were compared with the initial values. Throughout this study, ASTM and Turkish Standards were used. It was observed that concrete properties deteriorated with the heat; however, a small increase in strength was observed from 50 to 100°C. Strength loss was more significant on the specimens rapidly cooled in water. Both concrete mixtures lost a significant part of their initial strength when the temperature reached 700°C. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
This article introduces a new type of concrete, the so‐called rubber concrete, and thereupon presents a way of modification of waste rubber to construction articles. The conventional cement concrete is made by mixing cement with sand and pebbles, but the rubber concrete proposed here virtually excludes cement completely. The manufacturing process of rubber concrete can be divided into two methods, which are designated for dry and wet processes, but this article focused just on the dry process. The physical properties of rubber composite increased with the silane treatment of added aggregates, but the volume of the aggregate might not be a critical factor affecting the compressive strength in the range of the aggregate contents used in this study, that is, the interfacial adhesion between the matrix rubber and the aggregates was a key factor to improve the mechanical properties of rubber concrete. The compressive strength of rubber concrete was about 89 MPa and the Poisson's ratio, which is the ratio of compressive‐to‐tensile strength, was 5.5%. From the viewpoint of the compressive strength and the Poisson's ratio, rubber concrete had better properties than those of conventional cement concrete. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 35–40, 1999  相似文献   

16.
The mechanical properties and thermal conductivity of concretes including pumice aggregate (PA) exposed to elevated temperature were analyzed by thermal conductivity, compressive strength, flexure strength, dynamic elasticity modulus (DEM) and dry unit weight tests. PA concrete specimens were cast by replacing a varying part of the normal aggregate (0–2 mm) with the PA. All concrete samples were prepared and cured at 23 ± 10C lime saturated water for 28 days. Compressive strength of concretes including PA decreased that reductions were 14, 19, 25 and 34% for 25, 50, 75 and 100% PA, respectively. The maximum thermal conductivity of 1.9382 W/mK was observed with the control samples containing normal aggregate. The tests were carried out by subjecting the samples to a temperature of 0, 100, 200, 300, 400 500, 600 and 700 °C for 3 h, then cooling by air cooling or in water method. The results indicated that all concretes exposed to a temperature of 500 and 700 °C occurred a significant decrease in thermal conductivity, compressive strength, flexure strength and DEM. An artificial neural network (ANN) approach was used to model the thermal and mechanical properties of PA concretes. The predicted values of the ANN were in accordance with the experimental data. The results indicate that the model can predict the concrete properties after elevated temperatures with adequate accuracy. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
This research has investigated the mechanical properties and microstructure of metakaolin derived geopolymer mortars containing 50% by weight of silica sand, after exposure to temperatures up to 1200 °C. The compressive strength, porosity and microstructure of the geopolymer mortar samples were not significantly affected by temperatures up to 800 °C. Nepheline (NaAlSiO4) and carnegieite (NaAlSiO4) form at 900 °C in the geopolymer phase and after exposure to 1000 °C the mortar samples were transformed into polycrystalline nepheline/quartz ceramics with relatively high compressive strength (~275 MPa) and high Vickers hardness (~350 HV). Between 1000 and 1200 °C the samples soften with gas evolution causing the formation of closed porosity that reduced sample density and limited the mechanical properties.  相似文献   

18.
The effect of mineral admixture and curing condition on the sorptivity of concrete are investigated. In the present work, the maximum particle size and the grading of coarse aggregate, the cement content and water/cement ratio of the concrete are kept constant. Then, in the ordinary Portland cement (OPC) 42.5 concrete, a portion of the sand is replaced by a mineral admixture such as fly ash (FA), limestone filler, sandstone filler or silica fume (SF). This paper presents the results of both the sorptivity coefficient and the compressive strength of OPC 42.5 concretes with these mineral admixtures, and concretes with OPC 32.5, blended cement (BC) or trass cement (TC). The results obtained indicate that the sorptivity coefficient of concrete decreases as the compressive strength of concrete increases. It is also shown that the sorptivity coefficient of concrete is very sensitive to the curing condition. The effect of curing condition on the sorptivity coefficient of concrete seems to be higher in low-strength concretes.  相似文献   

19.
为了拓展氯氧镁水泥(MOC)材料的应用领域,以盐湖提钾肥副产物水氯镁石、轻烧氧化镁和粉煤灰为胶凝材料,制备了不同粉煤灰掺量的氯氧镁水泥混凝土(MOCC).研究了粉煤灰掺量对MOCC抗压强度、物相组成、微观形貌和孔结构的影响.结果表明:随着粉煤灰掺量的增加,MOCC的抗压强度逐渐降低,当粉煤灰掺量为40%(质量分数)时,...  相似文献   

20.
碱–磷渣–粉煤灰混凝土力学性能和耐久性(英文)   总被引:1,自引:1,他引:0  
研究了用碱激发磷渣_粉煤灰胶凝材料(atkali activated phosphor slag fly ash cement,AAPFC)制各的混凝土的力学性能和耐久性,并用扫描电子显微镜观察了形成的水泥石与骨料的界面结构.结果表明:相对于硅酸盐水泥混凝土,AAPFC混凝土具有强度高,弹性模量较低的特点;其抗冻性和抗氯离子渗透性显著优于硅酸盐水泥混凝土,但抗碳化性不及后者.硅酸盐水泥混凝土中水泥石与骨料界面上存在大量定向排列的Ca(OH)2,造成弱结合,而AAPFC混凝土中水泥石与骨料问结合紧密.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号