首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Full‐scale fire experiments were conducted at the National Institute of Standards and Technology (NIST) to investigate tire fire interactions with the passenger compartment of a motorcoach. A single full‐scale experiment with a partially furnished interior was conducted to investigate tire fire growth within the passenger compartment and the onset of untenable conditions. A tire fire was initiated using a burner designed to imitate the frictional heating of hub and wheel metal caused by failed axle bearings, locked brakes, or dragged blown tires. Measurements of interior and exterior temperatures, interior heat flux, heat release rate, toxic gases, and visibility were performed. Standard and infrared videos and still photographs were also recorded. The results of this single experiment showed that after fire penetration into the passenger compartment, the tenability limits were reached within 8 minutes near the fire and within 11 minutes throughout the passenger compartment.  相似文献   

2.
Current engineer's methods of fire safety design include various approaches to calculate the fire propagation and smoke spread in buildings by means of computational fluid dynamics (CFD). Because of the increased computational capacity, CFD is commonly used for prediction of time‐dependent safety parameters such as critical temperature, smoke layer height, rescue times, distributions of chemical products, and smoke toxicity and visibility. The analysis of smoke components with CFD is particularly complex, because the composition of the fire gases and also the smoke quantities depends on material properties and also on ambient and burning conditions. Oxygen concentrations and the temperature distribution in the compartment affect smoke production and smoke gas toxicity qualitatively and quantitatively. For safety designs, it can be necessary to take these influences into account. Current smoke models in CFD often use a constant smoke yield that does not vary with different fire conditions. If smoke gas toxicity is considered, a simple approach with the focus on carbon monoxide is often used. On the basis of a large set of experimental data, a numerical smoke model has been developed. The developed numerical smoke model includes optical properties, production, and toxic potential of smoke under different conditions. For the setup of the numerical model, experimental data were used for calculation of chemical components and evaluation of smoke toxicity under different combustion conditions. Therefore, averaged reaction equations were developed from experimental measurements and implemented in ANSYS CFX 14.0. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
The development of fire‐safety measures for high‐speed passenger trains has been focused on preventing fire initiation or delaying fire growth and spread through small‐scale tests of the materials used in trains. However, new fire‐safety approaches for trains consider a systemic approach. This approach considers numerous global factors that influence fire dynamics, such as the influence of vehicle design, selection of materials, and active and passive protection systems installed. In the present paper, the results of small‐scale and full‐scale tests carried out on the new generation of high‐speed trains operating in Spain are presented. This rolling stock is classified as category B according to the Technical Specification for Interoperability and Operation Category 3 according to EN 45545–1. The results confirmed good fire behaviour using both approaches (small and full‐scale tests). Additionally, several analyses have been performed, including an analysis of the quality of materials used for making different components of the passenger compartment and the influence of ignition source position on fire development. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
Although double‐skin façade (DSF) is an environmental‐friendly architectural feature, its fire behaviour is a deep concern. The interior glass system including the glass pane, metal frame and associated accessories will be hotter than the exterior glass system as demonstrated by earlier studies. The glass pane above the fire room will be broken to spread flame into the upper compartment. Aprons are proposed to protect the air cavity of DSF in a way similar to those outside a single‐skin façade. In this paper, the effect of aprons in protecting against fire spread from an underlying compartment to the compartments above by preventing glass breakage of the inner glass pane was studied. Fire and smoke from a post‐flashover room fire adjacent to the DSF would be trapped in the air cavity between the two glass panes. Spreading of hot gases with different apron widths was studied by numerical simulations with CFD first. Fire environment with and without breaking the apron immediately above the fire room was studied. Full‐scale burning tests on part of an experimental DSF rig were then carried out to demonstrate the performance of horizontal apron in the DSF rig of 6 m tall and air cavity depth of 2 m with different apron widths. All demonstrated that providing apron is appropriate in protecting DSF fires. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
The materials and products used in passenger trains may not be the first ignited element, but during the fire development, these materials, especially ceiling linings and wall coverings, contribute significantly to the fire growth. The fire safety requirements in passenger trains consist mainly of bench‐scale tests, with particular focus on the sample geometry, position and fire exposition. When this information is extrapolated to real end use conditions limitations appear. In this paper, a discussion of the use of fire dynamics simulator model and heat release rate experiments in cone calorimeter (bench‐scale test) is presented in order to represent the fire development in a passenger train compartment. For the study, two fire scenarios were selected: (1) the single burning item SBI test (modified) and (2) a passenger train compartment. Initially, the limitations of the assumptions and hypothesis made when producing the model were analyzed and the research team carried out a sensitivity study of the model results considering different grid sizes. In order to validate the model, both bench‐ and full‐scale fire tests were considered based on the results provided by the European research program FIRESTARR. The limitations and uncertainties in the results demonstrate the importance of two basic factors: the incident heat flux in the cone calorimeter tests and the prescribed ignition temperature. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
Fire safety analysis is a major issue for nuclear power plants (NPPs) in the context of deterministic safety assessments as well as of probabilistic safety analyses. Oil reservoirs and cables represent major fire loads. Therefore, simulations of oil and cable fires are of interest for quantifying the risk of such internal hazards in NPPs. To investigate the applicability of lumped parameter (LP) modelling, validations against fire experiments are required. In this way, results obtained with the LP code COCOSYS for simulations of oil and cable fire experiments conducted in the OECD PRISME 2 Project are presented. The PRISME 2 VSP (vertical smoke propagation) tests involving oil fires in a confined and mechanically ventilated facility were used to assess the ability of the LP code to simulate smoke propagation through a horizontal opening from the fire compartment to a compartment on top of it. As it was already identified in the “International Collaborative Fire Modelling Project (ICFMP),” this type of opening might cause problems in fire simulations, particularly for zone or LP fire models. In these simulations, attention has been paid to the coupling between the fire and the surrounding environment due to the decrease of oxygen concentration. Furthermore, different cable materials have been tested in the PRISME 2 CORE (completing and repeating) test campaign. By simulating the CFS‐3 (cable fire spreading) test with confined underventilated conditions, the applicability of the COCOSYS cable fire model with input parameters deduced from open atmosphere fire tests (CORE‐2) was analysed. Results show that the applicability of a LP fire model to predict the pyrolysis rate is partly limited for both oil and cable fires, in confined environment. However, simulations with prescribed pyrolysis rates show encouraging results in good agreement with the experimental data and underline the capability of the LP code COCOSYS to simulate the interaction between the thermal hydraulics inside compartments and the fire source.  相似文献   

7.
This paper describes and validates by comparisons with tests a one‐zone model for computing temperature of fully developed compartment fires. Like other similar models, the model is based on an analysis of the energy and mass balance assuming combustion being limited by the availability of oxygen, ie, a ventilation‐controlled compartment fire. However, the mathematical solution techniques in this model have been altered. To this end, a maximum fire temperature has been defined depending on combustion efficiency and opening heights only. This temperature together with well‐defined fire compartment parameters was then used as a fictitious thermal boundary condition of the surrounding structure. The temperature of that structure could then be calculated with various numerical and analytical methods as a matter of choice, and the fire temperature could be identified as a weighted average between the maximum fire temperature and the calculated surface temperature of the surrounding structure as a function of time. It is demonstrated that the model can be used to predict fire temperatures in compartments with boundaries of semi‐infinitely thick structures as well as with boundaries of insulated and noninsulated steel sheets where the entire heat capacity of the surrounding structure is assumed to be concentrated to the steel core. With these assumptions, fire temperatures could be calculated with spreadsheet calculation methods. For more advanced problems, a general finite element solid temperature calculation code was used to calculate the temperature in the boundary structure. With this code, it is possible to analyze surrounding structures of various kinds, for example, structures comprising several materials with properties varying with temperature as well as voids. The validation experiments were accurately defined and surveyed. In all the tests, a propane diffusion burner was used as the only fire source. Temperatures were measured with thermocouples and plate thermometers at several positions.  相似文献   

8.
The combustion characteristics of methanol‐gasoline blends pool fires were studied in a series of full‐scale tunnel experiments conducted with different methanol and gasoline blends. The parameters were measured including the mass loss rate, the pool surface temperature, the fire plume centerline temperature, the ceiling temperature, the smoke layer temperature profile, the flame height, and the smoke layer interface height. The gasoline components were analyzed by GC‐MS. The effects of azeotropism on the combustion characteristics of the different blends were discussed. On the basis of the results of the fire plume centerline temperature, the ceiling temperature, and the flame height, it shows that the tunnel fire regime gradually switches from fuel controlled to ventilation controlled with increasing gasoline fractions in the blends. The fire plume can be divided into 3 regions by the fire plume centerline temperature for the different blends. The N‐percentage rule to determine the smoke layer interface height is found to be applicable for tunnel fires with different blends for N = 26.  相似文献   

9.
Reconstructive fire testing is an important tool used by fire investigators to determine the cause, origin, and progression of a particular fire. Accurate reconstruction of the fire requires the laboratory structure to be outfitted with materials that, in terms of contribution to fire growth, perform similarly to the original materials found at the fire scene. Therefore, a procedure was developed to enable fire investigators to select these replacement materials on the basis of a quantitative assessment of their relative fire performance. This procedure consists of gram‐scale and/or milligram‐scale standard testing accompanied by inverse numerical modeling of these tests, which is used to obtain relevant material properties. A numerical model composed of a detailed pyrolysis submodel and empirical flame heat feedback submodels, which were developed in this study, is subsequently employed to simulate the early stages of the Room Corner Test, which was selected to represent full‐scale material performance. The results of these simulations demonstrate that this procedure can successfully differentiate between fire growth propensities of several commercially available medium density fiberboards.  相似文献   

10.
A series of tests including seven different materials and products have been conducted using a controlled equivalence ratio tube furnace test method. The main objective of the tests was to determine yields of fire‐generated products at defined combustion conditions. The tube furnace test method was set up and run in close agreement with that described in BS 7990:2003. At the time of experimental work the new tube furnace method was in the process of becoming an international standard. It was thus of interest to make an assessment of the capability of the method for determining production yields of important toxic fire products from different types of materials and products. The test series included solid wood, flexible polyurethane (PUR), fire‐retarded rigid PUR, a polyvinyl chloride (PVC) carpet, a high‐performance data cable with fluorine‐containing polymer matrix, a PVC‐based cable sheathing material and fire‐retarded polyethylene cable insulation material. Duplicate tests were generally conducted at both well‐ventilated and vitiated combustion conditions with these materials. The smoke gases produced from the combustion were quantified for inorganic gases by FTIR technique in all tests. A more detailed analysis of the smoke gases was conducted for some of the materials. This extended analysis contained a detailed assessment of organic compounds including, e.g. volatile organic compounds, isocyanates, aldehydes and polycyclic aromatic hydrocarbons. The analysis further included measurement of the size distribution of fire‐generated particles for some of the materials. The quantification of toxic inorganic gases produced by combustion at both well‐ventilated and vitiated conditions was successful regarding repeatability and stability. Typical yields for the two fire stages investigated were determined for a wide range of materials and products. The detailed analysis of organic compounds further corroborated that the new tube furnace method can replicate defined combustion conditions. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
Yan Wang  Fan Wu  Peihong Wu 《火与材料》2020,44(2):283-295
This paper investigates the effects of passenger blockage on smoke flow properties in longitudinally ventilated tunnel fires. A series of numerical simulations were conducted in a 1/5 small-scale tunnel with the different heat release rates (50-100 kW), longitudinal ventilation velocities (0.5-1 m/s), passenger blockage lengths (2-6 m), and ratios (0.17-0.267). The typical smoke flow properties in different tunnel fire scenarios are analyzed, and the results show that under the same heat release rate and longitudinal ventilation velocity, the smoke back-layering length, maximum smoke temperature, and downstream smoke layer height decrease with increasing passenger blockage length or ratio. The Li correlations can well predict the smoke back-layering length and maximum smoke temperature in tunnel fire scenarios without the passenger blockage. When the passenger blockage exists, the modified local ventilation velocity that takes the blockage length and ratio into account has been proposed to correct the Li correlations. The smoke back-layering length and maximum smoke temperature with the different blockage lengths and ratios can be predicted by the modified correlations, which are shown to well reproduce the simulation results.  相似文献   

12.
The determination of toxic components from fire gases is difficult because the environment is hot, reactions are often temperature dependent, and a lot of soot may be produced. Due to the different properties of the gas components, a different time‐consuming procedure for each species has traditionally been used. The use of FTIR (Fourier transform infrared) spectrometers as a continuous monitoring technique overcomes many of the problems in smoke gas analyses. FTIR offers an opportunity to set up a calibration and prediction method for each gas showing a characteristic spectral band in the infrared region of the spectrum. The objective of the SAFIR project was to further develop the FTIR gas analysis of smoke gases to be an applicable and reliable method for the determination of toxic components in combustion gases related to fire test conditions. The optimum probe design, filter parameters and the most suitable sampling lines in terms of flow rate, diameter, construction material and operating temperature have been specified. In the large scale, special concern was given to the probe design and the effects of the probe location as well as practical considerations of the sampling line length. Quantitative calibration and prediction methods have been constructed for different components present in smoke gases. Recommendations on how to deal with interferents, non‐linearities and outliers have been provided and a verification method for the spectrometer for unexpected variations and for the different models have been described. FTIR measurement procedures in different fire test scenarios have been studied using the recommendations of this project for measurement techniques and analysis and an interlaboratory trial of the FTIR technique in smoke gas analysis was carried out to define the repeatability and reproducibility of the method in connection with a small scale fire test method, the cone calorimeter. Copyright © 2000 John Wiley & Sons Ltd.  相似文献   

13.
In this article, the smoke production behaviors of crosslinked epoxy/polyamide resin (EP/PA) and intumescent fire retardant (IFR) in epoxy‐based intumescent fire‐retardant coating (IFR‐EP) have been investigated using cone calorimeter, smoke density instrument, and thermogravimetric analysis and Fourier transform infrared spectroscopic measurement. The static and dynamic smoke production behaviors of EP/PA and IFR‐EP indicate that the IFR has an excellent smoke suppression effect on EP/PA by forming protective char layer in the late combustion stage, while the epoxy crosslinked structure in IFR‐EP can enhance the thermal stability and reduce smoke production in the early combustion stage. In addition, according to the discussion of pyrolysis gas products, the IFR can effectively suppress the production of toxic and inflammable gases during the combustion process. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43912.  相似文献   

14.
This publication presents the experimental and numerical methods to model the devolatilization process of a glass‐fibre‐reinforced polyester/balsa‐cored sandwich material on small scale. The fundamental modelling of the source term in pyrolysis‐based fire simulations requires as input data the thermochemical properties of solid fuel and the kinetic parameters of the devolatilization process. First, the thermal decomposition of both elements composing the sandwich structure was studied by thermogravimetry coupled with gas analysis, in air and pure nitrogen atmospheres at several heating rates, in order to define a comprehensive multi‐step reaction pathway. A differential equation system is defined to model these decomposition processes. The kinetic parameters were then estimated by solving the system of equations by an inverse problem. Second, the fire behaviour of each element was studied separately and then combined in the sandwich structure on the cone calorimeter. In addition, numerical simulations with Fire Dynamics Simulator were performed to gradually assess the ability of the model(s) to reproduce each element composing the sandwich structure. Numerical and experimental results are compared and then discussed. Overall, the model provides a good agreement with the experimental data and encourages to model higher scales. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
In the event of a fire, intumescent fire protective coatings expand and form a thermally insulating char that protects the underlying substrate from heat and subsequent structural failure. The intumescence includes several rate phenomena, which have been investigated and quantified in the literature for several decades. However, various challenges still exist. The most important one concerns mathematical model validation under realistic exposure conditions and/or time scales. Another is the simplification of advanced models to overcome the often‐seen lack of a complete set of input and adjustable model parameters for a given coating, thereby providing models for industrial applications. In this work, these two challenges are addressed. Three experimental series, with an intumescent coating inside a 0.65 m3 gas‐fired furnace, heating up according to so‐called cellulosic fire conditions, were conducted and a very good repeatability was evident. The experiments were run for almost 3 h, reaching a final gas temperature of about 1100°C. Measurements include transient temperature developments inside the expanding char, at the steel substrate, and in the mineral wool insulation placed behind the substrate. A mathematical model, describing the intumescent coating behavior and temperatures in the furnace using a single overall reaction was developed and validated against experimental data. By including a decomposition front movement through the char, a good qualitative agreement was obtained. After further validation against experiments with other coating formulations, it has potential to become a practical engineering tool. © 2016 American Institute of Chemical Engineers AIChE J, 62: 3947–3962, 2016  相似文献   

16.
In the fire safety design of parking lots and buildings, estimating the possibility of fire spreading to surrounding combustibles, such as neighboring buildings and cars, is essential. The ignition possibility to surrounding combustibles can be predicted from the heat flux from a burning car to the combustibles. In this study, we conducted 2 full‐scale car fire experiments using minivan passenger cars and measured the heat fluxes to their surroundings. The cars were ignited at the rear bumper with 80 g of alcohol gel fuel. The windows were closed. Heat flux gauges were placed around the car to measure the heat flux in various directions. Cedar boards were placed next to the gauges, and burn damage to the boards was observed. When the windows shattered in succession, combustion in the passenger compartment became larger. At a distance of 50 cm from the burning car, the heat flux was greater than 40 kW/m2, and most of the cedar boards were completely burned. At a distance of 1 m, the heat flux was 10 to 20 kW/m2, and some of the cedar boards were burned. We devised a method for modeling the shape and temperature of flames in the burning cars. Furthermore, we propose a method for calculating heat fluxes in the lateral direction of the burning minivan passenger car, and we compared the calculated and measured heat fluxes as a means of verifying the proposed method. The shape of flame in the burning car was approximated as a rectangular prism to calculate the heat flux. The calculation results were in good agreement with the experimental results. The proposed method is expected to be useful for fire safety engineering.  相似文献   

17.
A series of numerical simulations were conducted in order to investigate the characteristics of smoke back‐layering and critical ventilation in the road tunnel at high altitude with reduced ambient atmospheric pressures. The results indicated that the smoke back‐layering length decreases with the reduction of ambient pressure. Meanwhile, the dimensionless critical longitudinal ventilation velocity decreases with one‐third power of the factor of ambient pressure at high altitude. By modifying the traditional dimensionless fire heat release rate with ambient pressure, new models were deduced to predict the smoke back‐layering length and critical ventilation velocity in the road tunnel at high altitude.  相似文献   

18.
In various medium‐to‐large‐scale fire test equipments like the ISO room corner test (RC), and more recently, the single burning item test (SBI) the mass flow rate measurement of the combustion gases plays a key role in the determination of the heat‐release rate and smoke‐production rate. With the knowledge of the velocity profile and the temperature of the flow, the mass flow rate is obtained by measuring the velocity on the axis of the duct. This is done by means of a bi‐directional probe based on the pitot principle. However, due to the variation of the mean temperature and the temperature gradient in any cross section of the duct, introduced by ever changing combustion gas temperatures, the velocity nor the density profile are constant in time. This paper examines the resulting uncertainty on the mass flow rate. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
Fire‐resistant glass products are considered to have better performance against fire. They are developed to replace conventional glass products. However, the smoke emitted from these products can be potentially harmful during fires and cause injuries or even deaths. Six samples of insulating glass available in the local market were selected. A variety of techniques, including X‐ray photoelectron spectroscopy, Fourier transform infrared spectroscopy (FTIR), thermogravimetric FTIR, pyrolysis–gas chromatography–mass spectrometry and tubular furnace coupled FTIR spectroscopy, were employed. According to the test results, there are two types of protective layers of the fire‐resistant glass. One consists of water, water‐soluble salt and polyamide with possible presence of alcohols, and the other consists of water metal silicates with possible presence of carboxylate and alcohols. Gases emitted from the protective layers heated in air, in argon and in vacuum are similar. Water vapor, carbon dioxide and hydrogen chloride are the main components of the gases emitted. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号