共查询到20条相似文献,搜索用时 15 毫秒
1.
以尿素和磷酸为原料合成聚磷酸铵,讨论了原料配比、聚合温度、固化温度、固化时间等因素对产品性能的影响。通过实验得出优化工艺条件为:尿素与磷酸的物质的量比为1.7∶1,聚合温度为160 ℃,固化温度为
240 ℃,固化时间为160 min。在该条件下,聚磷酸铵产品五氧化二磷质量分数为68.55%,氮质量分数为13.0%,平均聚合度为35,pH为5.45,阻燃率为65.10%。产品质量符合HG/T 2770-2008工业聚磷酸铵标准。 相似文献
2.
3.
The flame retardant polypropylene containing the micro-envelope core-shell structure flame retardant, which encapsulated ammonium polyphosphate into melamine-formaldehyde resin and sodium silicate through in situ polymerization was prepared with polyamide 6, added as a carbon-forming agent. The composition of ammonium polyphosphate, encapsulated ammonium polyphosphate with melamine-formaldehyde resin and the micro-envelope core-shell structure flame retardant were characterized. The fire safety and thermal stability were investigated and showed an improvement including limiting oxygen index, thermogravimetric analysis, vertical burning tests, and microscale combustion calorimeter. The burned compounds were also studied to confirm the burning mechanism. The results showed the flame retardant performance had been greatly improved, while polyamide 6 had better char-forming effect. Besides, the water solubility of flame retardants and their influence on the mechanical properties of polypropylene were also investigated. The results on the effects of additives demonstrated a high efficiency flame retardant to polypropylene. A core-shell flame retardant that sodium silicate and melamine-formaldehyde resin-coated ammonium polyphosphate had been constructed. The effect of the built flame retardant system on the combustion performance of polypropylene was studied from the mechanism and performance. The LOI of the most flame retardant polypropylene reached 28.6%, and UL-94 reached the V-0 level. 相似文献
4.
以磷酸二氢铵和尿素为原料,采用微波加热研究聚磷酸铵的最优聚合工艺条件。分别考察不同原料配比、反应温度和反应时间对聚磷酸铵中五氧化二磷含量、氮含量和聚合度的影响。通过实验得出微波加热聚合聚磷酸铵的最优条件为:磷酸二氢铵与尿素物质的量比为1:1.1、反应温度为170 ℃、反应时间为20 min,样品经XRD检测为Ⅰ-型聚磷酸铵,该条件下得到的产品五氧化二磷质量分数为70.33%、氮质量分数为14.34%、聚合度为50.33,符合化工行业标准HG/T 2770—2008一等品指标要求。 相似文献
5.
以磷酸和尿素为原料合成了高聚合度的聚磷酸铵。通过单因素实验对制备工艺进行了优化,考察了原料配比、升温速率、预聚合温度、固化温度和固化时间等对产品质量的影响,采用核磁共振法(NMR)测定了聚磷酸铵的平均聚合度,并用X射线衍射(XRD )和红外(IR)相结合的方法对产品的晶体结构进行了表征,同时测定了聚磷酸铵的溶解度和总磷含量。结果表明,最佳制备工艺条件为:n(磷酸)∶n(尿素)=1∶1.9,预聚合阶段升温速率为2~3 ℃/min,预聚合温度为130 ℃,固化温度为230 ℃,固化时间为90 min。此条件下合成的聚磷酸铵平均聚合度为114,水中溶解度为0.492 g,总磷质量分数为31.75%,XRD表征结果表明,所得产品为Ⅰ型聚磷酸铵。 相似文献
6.
7.
Peikun Zhang Yang Zhou Hui Su Hong Lin Saiqi Tian Yi Chen Jun Yan Yazhou He Haojun Fan 《Polymer International》2017,66(11):1598-1609
Despite being extensively implemented in research, it remains challenging but highly desirable to develop ammonium polyphosphate (APP)‐based polyurethane (PU) combining excellent flame retardancy and improved mechanical properties. Herein, hydroxyl‐decorated APP (OH‐APP) was successfully fabricated through a facile, green, yet efficient cation exchange reaction with N‐methylethanolamine, and utilized as a multifunctional reinforcing agent for solvent‐free two‐component PU in the curing process. Results demonstrate that the conjugation of OH‐APP imparts to the resultant cured PU samples (PU/OH‐APP) enhanced fire safety and smoke suppression performance, as evidenced by the considerable decrease in peak heat release rate, total heat release, peak smoke production rate and total smoke production by 75.4, 30.1, 64.3 and 14.4% over those of pure PU. Furthermore, the tensile strength of PU/OH‐APP is improved by 66.5%, while the ductility is well maintained, highlighting its promising potential in industrial applications. This work is aimed at opening a new avenue for the development of APP‐based PU with outstanding performances through covalent anchoring approaches. © 2017 Society of Chemical Industry 相似文献
8.
系统介绍了聚磷酸铵的生产方法,包括磷酸二氢铵法、磷酸-尿素法、磷酸脲法、磷酸二氢铵-尿素法、磷酸氨化法和磷酸铵-五氧化二磷法。磷酸二氢铵法、磷酸-尿素法、磷酸氨化法得到的产物聚合度较低,低聚合度聚磷酸铵水溶性高,呈中性,适宜作农用肥料;磷酸二氢铵-尿素法和磷酸铵-五氧化二磷法得到的产物聚合度较高,高聚合度聚磷酸铵适宜作阻燃剂。 相似文献
9.
10.
11.
以聚碳酸酯二醇、异氟尔酮二异氰酸酯为原料,添加不同用量的聚磷酸铵(APP),制备了一系列阻燃水性聚氨酯。UL-94测试表明,随着APP添加量的增大,水性聚氨酯的阻燃性逐渐增大。锥形量热仪测试表明,随着APP含量从0%增加25%,水性聚氨酯的点燃时间由29 s延长到45 s,最大热释放速率(HRR)由413.2 k W/m2降低到314.3 k W/m2。热重测试表明,水性聚氨酯膜的热稳定性随着APP含量的增加而逐渐升高,当APP为25%时,热稳定性最好。力学性能测试表明,随着APP含量的增加,涂膜的拉伸强度及断裂伸长率逐渐下降。综合考虑以上因素,阻燃水性聚氨酯中聚磷酸铵的适宜用量为20%。 相似文献
12.
Lan‐Lan Ge Hong‐Ji Duan Xiao‐Guang Zhang Chen Chen Jian‐Hua Tang Zhong‐Ming Li 《应用聚合物科学杂志》2012,126(4):1337-1343
A new intumescent flame‐retardant (IFR) system consisting of expandable graphite (EG) and ammonium polyphosphate (APP) was applied in acrylonitrile–butadiene–styrene (ABS) resin. A synergistic effect between EG and APP on the flame retardancy of ABS was observed. Fixing the total loading of flame retardant at 15 wt %, the limited oxygen index (LOI) could reach 31 vol % at a weight ratio of 3 : 1 for EG and APP. While LOI values of EG‐ and APP‐filled ABS were only 26.0 and 21.5 vol % at the same loading, respectively. The UL‐94 vertical burning test suggested that samples with different ratios of EG and APP could all pass V‐0 rating while the samples containing EG and APP alone only passed V‐1 rating. Thermogravimetric analysis indicated that the addition of EG and APP (3 : 1 by weight) to ABS led to an increase in the amount of high‐temperature residue by 11.8 wt %, and a decrease of mass loss rate by 0.7%/°C compared with pure ABS. Scanning electronic microscopy revealed a homogeneous compact intumescent char layer of ABS/EG/APP samples. Based on our experiment and combined with others' previous studies, the synergistic mechanism is inferred. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012 相似文献
13.
Meng Ma Xinpeng Wang Kai Liu Si Chen Yanqin Shi Huiwen He Xu Wang 《Polymer International》2020,69(10):985-994
The preparation of poly(l ‐lactic acid) (PLLA) with high mechanical and ideal flame‐retardant properties is a great challenge. Herein, a simultaneous toughness and flame‐retardant PLLA composite was successfully fabricated by using a one‐step process which introduces 4,4′‐methylenediphenyl diisocyanate and ammonium polyphosphate (APP) into PLLA/poly(ε‐caprolactone) blends. SEM, Fourier transform infrared spectroscopy and TGA were adopted to confirm that APP participated in the in situ reaction during the melt process. The impact strength was increased to 13.5 kJ m?2 from 1.0 kJ m?2 for L8P2A5 composite, indicating the toughening effect of reactive blending. The cone calorimeter test, limiting oxygen index and vertical burning test results indicate that the flame‐retardant properties of the composites are enhanced with increasing APP content. This work provides a method to prepare PLLA with high mechanical properties and enhanced flame retardancy. © 2020 Society of Chemical Industry 相似文献
14.
15.
Xian‐Yan Meng Ling Ye Xiao‐Guang Zhang Pei‐Mei Tang Jian‐Hua Tang Xu Ji Zhong‐Ming Li 《应用聚合物科学杂志》2009,114(2):853-863
In this work, the effect of expandable graphite (EG) and ammonium polyphosphate (APP) on the flame retardancy and mechanical properties of the rigid polyurethane foam (RPUF) was studied. The results indicated that both EG and APP could effectively improve the flame retardancy of RPUF, while the retardancy of EG was better than APP. When the flame‐retardant loading was 15 wt %, the limited oxygen index (LOI) values of APP‐ and EG‐filled RPUF were 24.5 and 32 vol %, respectively. According to the LOI test, the optimal ratio of APP to EG in RPUF composites was 1 : 1 by weight, at which the LOI value of 15 wt % (APP + EG)/RPUF was 30.5 vol %. Thermal degradation test of RPUF composites by thermogravimetric analysis indicated that the addition of APP and EG to RPUF could lead to an increase in the amount of high‐temperature residue. Under the same conditions, the residue amount of EG/RPUF was less than that of APP/RPUF at the same temperature. Compression test and dynamic thermal mechanical analysis indicated that both the compressive strength and modulus decreased at a certain extent with the EG‐ or APP‐filled into RPUF, respectively, but with the mixture of EG and APP added into RPUF, the mechanical properties of these materials increased. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 相似文献
16.
通过原位聚合法制备三聚氰胺-甲醛树脂(MF)微胶囊包覆聚磷酸铵(APP)粒子,研究了APP粒径对微胶囊化APP(MCAPP)结构与性能的影响。将两种MCAPP(APP平均粒径分别为5,15μm)添加至聚丙烯(PP)基体中,研究了PP/MCAPP阻燃材料的性能。结果表明:不同粒径的APP均能成功被MF包覆,且包覆后的APP粒子的水溶性均大幅下降。PP/MCAPP阻燃材料的耐渗析性和极限氧指数均得到一定程度的提高。粒径小的APP有利于MF的包覆,包覆结构层更完整。MF和APP有很好的协同作用,在APP包覆不完全的情况下,能更有效地发挥两者的相互作用,提高PP复合材料的阻燃性。 相似文献
17.
18.
Sheng Hu Zhi-Wei Tan Fei Chen Jun-Guo Li Qiang Shen Zhi-Xiong Huang Lian-Meng Zhang 《火与材料》2020,44(5):673-682
The flammability behaviors of ammonium polyphosphate/aluminum hydroxide/mica/silicone rubber (APP/Al[OH]3/mica/SiR) ceramifying composites containing APP, Al[OH]3, and mica are investigated by cone calorimeter test. The thermal degradation and the synergistic effect of APP/Al(OH)3/mica/SiR composites are investigated by thermal gravimetric analysis, X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. APP/Al(OH)3/mica/SiR composites with 25 wt% of APP, 20 wt% of Al(OH)3, 25 wt% of mica, and 30 wt% SiR presents a much lower total heat release, the value of peak heat release rate (PHRR), the maximum average heat release rate, the longest time to ignition, and time to the PHRR (tPHRR), compared with the flame-retardant properties from composites with filler of APP and mica or APP and Al(OH)3 alone. The results indicate that there is an excellent synergism in APP, Al(OH)3, and mica, which endows APP/Al(OH)3/mica/SiR composites with both good flame retardancy and fire prevention. The study on the synergism effect between fire prevention and flame retardancy of APP/Al(OH)3/mica/SiR composites indicates that compounds containing P-O-Al are formed due to the reaction between APP and Al(OH)3 during combustion in the early stage and a coherent, dense, and sealed structure is formed due to the reaction in mica, phosphates, and the thermal decomposition products of SiR during combustion in the later stage. 相似文献
19.
An attractive intumescent flame retardant epoxy system was prepared from epoxy resin (diglycidyl ether of bisphenol A), low molecular weight polyamide (cure agent, LWPA), and ammonium polyphosphate (APP). The cured epoxy resin was served as carbonization agent as well as blowing agent itself in the intumescent flame retardant formulation. Flammability and thermal stability of the cured epoxy resins with different contents of APP and LWPA were investigated by limited oxygen index (LOI), UL‐94 test, and thermogravimetric analysis (TGA). The results of LOI and UL‐94 indicate that APP can improve the flame retardancy of LWPA‐cured epoxy resins. Only 5 wt % of APP can increase the LOI value of epoxy resins from 19.6 to 27.1, and improve the UL‐94 ratings, reaching V‐0 rating from no rating when the mass ratio of epoxy resin to LWPA is 100/40. It is much interesting that LOI values of flame retardant cured epoxy resins (FR‐CEP) increase with decreasing LWPA. The results of TGA, FTIR, and X‐ray photoelectron spectroscopy (XPS) indicate that the process of thermal degradation of FR‐CEP consists of two main stages: the first stage is that a phosphorus rich char is formed on the surface of the material under 500°C, and then a compact char yields over 500°C; the second stage is that the char residue layer can give more effective protection for the materials than the char formed at the first stage do. The flame retardant mechanism also has been discussed according to the results of TGA, FTIR, and XPS for FR‐CEP. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 相似文献
20.
Jiaji Cheng Shaoshuai Niu Dan Ma Yue Zhou Feng Zhang Wenjuan Qu Dong Wang Shaoxiang Li Xinlong Zhang Xianqun Chen 《应用聚合物科学杂志》2020,137(48):49591
In this article, a flame retardant microcapsule ammonium polyphosphate microencapsulated by polyurea (POAPP) was successfully synthesized by interfacial polymerization method using ammonium polyphosphate (APP) as core and polyurea as shell. The microencapsulation is observed by scanning electron microscopy and characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis and hydroscopicity test, which prove the success in synthesizing microencapsulation. When the POAPP is added into rigid polyurethane foam (RPUF), the flame retardant and mechanical properties are investigated using cone calorimeter, limited oxygen index test, and compressive strength test. The PHRR of RPUF-POAPP20 decreased from 336.52 kW/m2 (Ref. RPUF) to 203.84 kW/m2 and the THR of RPUF-POAPP20 was only 7.6 MJ/m2, which is 33.9% lower than that of Ref. RPUF. Furthermore, the limiting oxygen index of RPUF-POAPP20 reaches 24.8%, which increased by 36.3% compared to Ref. RPUF. Whereas the maximum compressive strength of RPUF-POAPP5 was 7.46 MPa, which is higher than that of RPUF-APP5. 相似文献