首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
低温共烧陶瓷(LTCC)技术作为一种新兴的集成封装技术,以其优良的高频、高速传输特性及小型化、高可靠而备受关注。而建模分析和优化综合是叠层LTCC滤波器设计的关键。该文利用智能方法对叠层LTCC滤波器建模与优化,采用LTCC技术制备多层结构的LTCC滤波器。该结构滤波器的尺寸显著减小,从而有利于实现电路的小型化。  相似文献   

2.
设计并实现了一个2阶切比雪夫带通滤波器,采用1/4波长终端短路线作为谐振腔,谐振腔间采用电容耦合实现导纳转换,来达到减小体积的目的.给出了适用于工程应用的设计步骤以及设计公式,滤波器的实际实现采用LTCC技术,结合三维电磁场仿真,设计出一种高抑制、低插损的滤波器,该滤波器中心频率为4 GHz、带宽为400 MHz,插入损耗小于2.3dB.可以广泛应用于导航和通信系统电路中.  相似文献   

3.
采用低温共烧陶瓷(LTCC)技术设计电容耦合形式的带通滤波器.通过调节带状线电感与接地金属的距离来微调电感值和电感的品质因数(Q)值,提高了电路的整体性能.实现了一个中心频率在1.8 GHz,带宽为250 MHz,且在高低禁带端各有一个衰减极点的优良小型化带通滤波器,其外形尺寸为2.0 mm×1.2 mm×0.9 mm,满足0805型号封装要求.  相似文献   

4.
提出了一种小型多层低温共烧陶瓷(LTCC)三级带通滤波器的结构并给出其设计方法。该滤波器采用阶跃阻抗谐振器(SIR)作为谐振单元,可以有效缩短谐振器长度。各级谐振器分别位于两个平面,且采用紧凑的旋转对称结构,极大地减小了体积。通过在输入输出抽头之间跨接电容的方法增加了一个传输零点,使得滤波器频响曲线更为陡峭。该滤波器尺寸小,谐波抑制能力强,在小型化微波通信系统以及雷达系统中有着广阔的应用前景。  相似文献   

5.
根据低温共烧陶瓷技术的特点,提出了一种二阶微波带通滤波器的三维结构设计方法,设计的滤波器结构简单、尺寸小、工作频率可调。按照该设计方法,通过电磁仿真软件AnsoftHFSS10设计了一款带通滤波器。结果表明,该滤波器的中心频率为5.2GHz,带宽为0.4GHz,通带内插损小于2.1dB,尺寸为2.5mm×2.2mm×0.4mm,能够满足微波无线通信系统的要求。  相似文献   

6.
设计了一种小型化的低温共烧陶瓷(LTCC)滤波器,该滤波器电路由电容耦合的二阶谐振腔组成。设计了该滤波器的三维多层结构,利用组件间的耦合效应,产生一个传输零点,提高了滤波器性能。仿真结果表明,该滤波器中心频率为3.41GHz,相对带宽为5.9%(200MHz),体积为3.8mm×2.8mm×0.8mm,在S波段的通讯,雷达等射频系统有广泛的应用。  相似文献   

7.
结合阶梯阻抗谐振器的设计方法, 设计了一款基于低温共烧陶瓷(LTCC)工艺的阶梯阻抗谐振器带通滤波器。所设计带通滤波器除了顶部、底部接地板,中间共有三层结构, 各个相邻的谐振器之间进行宽边耦合。该带通滤波器有两个谐振腔, 中心频率约为10 GHz, 通带范围为8.9 GHz 到11.7 GHz。该带通滤波器有效地减小了体积, 总体积为3.2 mm×1.6 mm×1.7 mm。  相似文献   

8.
提出了一种新型基于低温共烧陶瓷技术的双重折叠四分之一模基片集成波导谐振腔结构,并利用该谐振腔设计了一种垂直排布腔体的两阶滤波器。由于采用了LTCC技术、半模技术以及折叠技术,滤波器的尺寸得以大幅减小,与原始腔体相比,面积减小了大约93.75%。滤波器工作在1.55GHz,插入损耗1.2dB,回波损耗小于-11.5dB,性能较好。  相似文献   

9.
设计了一种基于低温共烧陶瓷技术带状线形式的Ka波段带通滤波器,该滤波器被埋入11层的基板中。提出一种类同轴结构来减小共面波导到带状线转换之间的阻抗不连续性。整个带状线滤波器采用了金属直通孔来实现接地和屏蔽功能。测试结果表明,滤波器中心频率为34.69GHz,带宽1.73GHz内最大插入损耗为-4.5dB,通带内回波损耗低于-13.45dB。该测试结果包含两个射频接头。整个滤波器尺寸为9.8mm×5mm×1.056mm。这种紧凑埋置式的结构和测试结果表明,该带状线滤波器适合于毫米波多芯片组件的应用。  相似文献   

10.
多层LTCC带通滤波器的设计   总被引:1,自引:0,他引:1  
LTCC技术具有可实现高密度电路互连、内埋置无源元件、延迟小以及优良的高频特性与可靠性,目前正成为微波与射频等通讯领域常用的技术之一。本文给出了设计多层LTCC带通滤波器的一般步骤,设计时所需注意的事项,并利用HFSS对中心频率为2450GHz,带宽为100MHz的滤波器进行了仿真模拟。讨论了采用平行耦合圆杆带状线电感、电容的实现,给出了电路模拟和仿真模拟的结果.  相似文献   

11.
一种新型多层低温共烧陶瓷三级带通滤波器   总被引:5,自引:0,他引:5  
墨晶岩  马哲旺 《微波学报》2006,22(2):59-61,70
提出了一种新型多层低温共烧陶瓷(LTCC)三级带通滤波器的结构及其设计方法。首先,利用电磁场仿真软件对各谐振器的谐振特性,谐振器与外部电路的耦合特性,以及谐振器之间的耦合特性进行了分析,绘制出电路设计中需要的各种曲线。在此基础上得到三级切比雪夫响应带通滤波器的尺寸和频响曲线。其次,在第1和第3级谐振器之间引入交叉耦合,并通过改变该交叉耦合的强弱,在阻带中产生位置可调节的传输零点,从而显著地增大传输零点附近的衰减。通过上述场与路相结合的设计方法,获得了尺寸小、频率选择特性好的多层LTCC三级带通滤波器。  相似文献   

12.
提出了一种微型LTCC四级带通滤波器的实现方法。该带通滤波器由四个性能良好的谐振器组成,通过交叉耦合实现传输零点从而达到良好的阻带衰减。通过电路仿真以及电磁场三维仿真软件进行三维建模,对模型进行加工测试,滤波器的测试结果与电磁仿真结果相匹配。四级带通滤波器的中心频率为5.25GHz,带宽为500 MHz,通带范围内插入损耗均优于1.59dB,在0~4.65GHz频率以及6.33GHz频率以上的带外衰减均优于40dB,尺寸仅为2.5mm×3.2mm×1.5mm。本设计采用了带状线分布式结构来实现滤波器的微型化。  相似文献   

13.
利用低温共烧陶瓷(LTCC)工艺,通过通孔互联实现了三维结构的发夹型宽带带通滤波器。该结构将谐振单元的横向尺寸转移到z轴方向实现,有效减小了滤波器的尺寸并且谐振器间的耦合系数为传统结构的1.6倍。利用五个谐振器结构实现较宽的频带(>30%)和较好的选择特性。设计并实际制作了中心频率10 GHz的LTCC带通滤波器,3 dB带宽为8.8~12.1 GHz,实测指标与设计仿真结果较为吻合。  相似文献   

14.
低温共烧片式多层带通滤波器仿真优化及制备   总被引:2,自引:0,他引:2  
采用AnsoftHFSS电磁场模拟仿真软件,对LTCC多层带通滤波器制备过程中的介质材料与工艺偏差进行模拟仿真,并与实际器件测试结果对比。研制的片式多层带通滤波器的偏差的允许范围是:微波介质陶瓷材料介电常数误差±2%,而品质因数由于本身较高,在一定范围内对滤波器的性能影响不大;工艺上应控制流延生瓷片厚度±1.5μm、叠层/切割误差±50μm,工艺中的分层缺陷则导致器件性能劣化,中心频率严重偏移。  相似文献   

15.
丁世敏  田晖 《电子科技》2010,23(8):65-67
基于LTCC技术提出了一种二阶带通滤波器,它是无源器件的重要结构。在设计上,得到一个中心频率为2.45 GHz、带宽为100 MHz的微波带通滤波器,传输零点频率为1.75 GHz和4.40 GHz。其尺寸为3 mm×3 mm×0.7 mm。它由电感电容元件构成6层立体结构,电磁与电路仿真结果吻合,表明所设计结构既减小了其体积,又得到了较好的频率效果。  相似文献   

16.
提出了一种新型的基于LTCC技术的带通滤波器实现方法。带通滤波器采用两个谐振单元耦合,在输入输出端引入并联反馈电容在通带两边形成一对传输零点,提高了阻带的衰减性能。分别在HFSS和IE3D中构建物理模型,采用εr=2.2的介质材料,尺寸为5 mm×4 mm×2 mm,设计出中心频率f0=1.6 GHz,相对带宽约9%的滤波器,通带内插入损耗小于1 dB,在1.1 GHz和2.1 GHz处形成两个传输零点,两种软件的仿真结果很好地吻合。  相似文献   

17.
黄小晖  吴国安 《半导体技术》2011,36(12):957-961
提出了一种阻带具有多个传输零点的带通滤波器设计方法,基于低温共烧陶瓷(LTCC)技术实现,可满足移动通信用滤波器小型化、高性能的要求。在电路设计中,通过改进滤波器谐振器结构,分别在阻带的低端近端、高端远端引入传输零点以提高带外抑制。借助三维仿真软件,进行指标、结构的仿真优化,设计并制作了一款尺寸为6 mm×3 mm×2 mm的LTCC滤波器,其中心频率f0=2.25 GHz,0.5 dB带宽不小于100 MHz,通带内损耗不大于1.8 dB,在1.33,1.78 GHz和二次谐波处均有传输零点。实测结果表明,该滤波器在阻带低端和二次谐波处有较好的抑制,因此其在移动通信系统中会有广泛应用。  相似文献   

18.
带通滤波器是无线通信中重要的元器件之一,其小型化具有重要意义.研究设计了一种改进型的梳状线LTCC滤波器.在一般抽头式梳状线滤波器设计的基础上,通过增加输入输出级之间的交叉耦合,引入了传输零点,并结合电路仿真以及三维电磁场仿真,辅之以DOE(design of experiment)的设计方法,设计出了一种高抑制、低插损的滤波器,实际测试结果与仿真结果吻合较好.由于采用了LTCC多层结构,该滤波器体积非常小,是标准的片式元器件封装.具有较强的实用性.  相似文献   

19.
提出了一种基于LTCC技术的新型高阻带抑制带通滤波器的实现方法.采用在并联谐振器的圆柱形电感之间引入感性耦合,在高阻带产生一个传输零点,并且能实现非常好的阻带衰减性能.本文对传统的梳状线带通滤波器结构进行改进,利用过孔的寄生电感效应,将过孔用作谐振杆,明显减小了器件的尺寸.并且通过利用空间耦合的寄生效应,实现滤波器的阻带高抑制传输零点,以满足了对特殊频点高抑制的要求.运用该方法设计了中心频率1.65 GHz,通带200MHz,带外2GHz处衰减大于60dBc的五级带通滤波器.实物测试结果和全波电磁仿真结果吻合较好.  相似文献   

20.
层叠式LTCC低通滤波器设计   总被引:2,自引:2,他引:0  
给出带有衰减极点的层叠式LTCC低通滤波器的结构模型。滤波器外形尺寸为2.0mm×1.2mm×0.9mm,采用εr=7.8、tanδ=0.0047微波陶瓷介质材料,设计出的截止频率?c=300MHz的低通滤波器,通带最大插入损耗为0.8dB,通过引入一个衰减极点,提高阻带的衰减性能,同时获得陡峭的过渡带。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号