首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work the thermal properties of poly (l-lactide)/multi-wall carbon nanotube (PLLA/MWCNT) composites have been investigated. Thermal conductivity was determined after measuring specific heat capacity (Cp), thermal diffusivity (D) and bulk density (ρ) of composites. Thermal conductivity rises up to 0.345 W/m K at 5 wt.% after reaching a minimum value of about 0.12 W/m K at 0.75 wt.%. In order to understand the heat-conduction process, experimentally obtained thermal conductivities were fitted to an existing theoretical model. The much lower thermal conductivity of composites compared with the value estimated from the intrinsic thermal conductivity of the nanotubes and their volume fraction could be explained in terms of the obtained large thermal resistance (Rk) of 1.8 ± 0.3 × 10?8 m2 K/W at nanotube–matrix interface. The CNT dispersion in the composites was analyzed by atomic force microscopy (AFM) and transmission electron microscopy (TEM). Although the thermal resistance dramatically reduces the estimated bulk thermal conductivity of composites, the existence of an interconnected conductive nanotube network for thermal diffusion in PLLA/MWCNT composites demonstrates that the addition of carbon nanotubes represents an efficient strategy in order to successfully enhance the thermal conductivity of insulator polymers.  相似文献   

2.
As the hydration of calcium aluminate cements (CAC) is highly temperature dependent, yielding morphologically and structurally different hydration products that continuously alter material properties, a good knowledge of thermal properties at early stages of hydration is essential. Thermal diffusivity and thermal conductivity during CAC hydration was investigated by a transient method with a numerical approach and a transient hot wire method, respectively. For hydration at 15 °C (formation of mainly CAH10), thermal diffusivity shows a linear decrease as a function of hydration degree, while for hydration at 30 °C there is a linear increase of thermal diffusivity. Converted materials exhibited the highest values of thermal diffusivities. The results on sealed converted material indicated that thermal conductivity increased with an increase in temperature (20-80 °C), while thermal diffusivities marginally decreased with temperature. The Hashin-Shtrikman boundary conditions and a simple law of mixtures were successfully applied for estimating thermal conductivity and heat capacity, respectively, of fresh cement pastes.  相似文献   

3.
In this study, silicon carbide (SiC) composites reinforced with pitch-based carbon fibers and composed of heat transfer channels were fabricated by combining chemical vapor infiltration and reactive melting infiltration method. It was observed that the internal heat conduction skeleton of pitch-based carbon fibers was sequentially formed. The thermal conductivities from room temperature to 500 °C along through-thickness direction and in-plane direction were investigated. The results showed that Cpf/SiC composites with heat transfer channels possessed excellent thermal conductvity in two directions, and the thermal conductivity increased with increasing volume content of heat transfer channels. The thermal conductivity in through-thickness direction reached 38.89 W/(m·K), and that for in-plane direction reached 112.42 W/(m·K). Theoretical calculations were empolyed to study the temperature dependence of the Cpf/SiC composites. The variations in slope A′ and intercept B′ values of fitted curves were in good agreement with the experimental results. To verify the reliablilty of the theoretical model, the Cpf/SiC composites were heated at 1650 °C for 2 h and the thermal conductivity exhibited further improvement due to the formation of more perfect crystalline structure. Thermal conductivity through thickness direction improved to 43.49 W/(m·K), and that in in-plane direction improved to 142.49 W/(m·K), which could be identified by the theoretical model. Finally, the leading edge model was established by using ABAQUS finite element analysis software to evaluate the potential application of the composites. Owing to the outstanding thermal conductivity, the leading edge obtained by using Cpf/SiC composites in this study exhibited lower temperature gradient and a more uniform temperature distribution. Moreover, less thermal stress and displacement were generated during heating process.  相似文献   

4.
The dc electrical conductivity of composites of poly(vinyl chloride) filled with amorphous carbon (a-C) flakes has been studied from room temperature to 1.2 K. The dc conductivity shows percolative behavior and as a function of a-C content, follows the scaling law σα(p − pc)t where pc is percolation threshold and t the critical exponent with values 0.0165 and 3.1, respectively. The value of t shows evidence for non-universal value of critical exponent. In the temperature range 1.2 K to 50 K-60 K all the samples show the thermal fluctuation induced tunneling of the charge carriers through the insulating layer of polymer separating amorphous carbon aggregates. At high temperatures the differential thermal expansion of PVC and amorphous carbon plays a crucial role in conduction mechanism that leads to positive temperature coefficient of resistivity near to room temperature.  相似文献   

5.
Thermal diffusivity, thermal conductivity and specific heat of several materials used as floor tiles have been measured using the laser flash method. Natural stones, particularly granite, porcelain stoneware and red stoneware materials of low water absorption, are more effective thermal conductors than white stoneware and vinyl, which have thermal conductivities below 1 W m−1 K−1. Therefore, last two should not be recommended for radiant floor heating applications. Enhancement of thermal conductivity of red and porcelain stoneware has been achieved by adding Al2O3 of certain characteristics to the ceramic paste. In this way, thermal diffusivity increases of up to 50% have been obtained by adding 20 wt.% of Al2O3 particles.  相似文献   

6.
A pulse method for the simultaneous determination of thermal diffusivity, α, specific heat capacity, Cp, and thermal conductivity, λ, are measured for a series of curing of polyester and styrene in the presence of 10, 20, and 30% carbon black in the temperature range 300–450 K. The results show a dependence of the above-mentioned properties on temperature and composition. The mechanism of heat transfer through the specimens is also discussed. © 1993 John Wiley & Sons, Inc.  相似文献   

7.
The thermal diffusivity (α) of paper, a porous and thin material, was determined by an ac Joule heating method developed in our laboratory. With this technique the thermal diffusivity of paper was obtained directly with high reproducibility without the need for special preparations, such as the black coating, required in conventional methods. The thermal diffusivity (α) of paper was obtained as a function of temperature and the apparent density (ρ). The apparent thermal conductivity (λ) of paper was calculated from α, ρ, and the heat capacity at constant pressure (Cp): α decreased with increasing apparent density, but λ did not show a density dependence. © 1998 SCI.  相似文献   

8.
Thermal diffusivity and conductivity of hot pressed ZrB2 with different amounts of B4C (0–5 wt%) and ZrB2–SiC composites (10–30 vol% SiC) were investigated experimentally over a wide range of temperature (25–1500 °C). Both thermal diffusivity and thermal conductivity were found to decrease with increase in temperature for all the hot pressed ZrB2 and ZrB2–SiC composites. At around 200 °C, thermal conductivity of ZrB2–SiC composites was found to be composition independent. Thermal conductivity of ZrB2–SiC composites was also correlated with theoretical predictions of the Maxwell–Eucken relation. The dominated mechanisms of heat transport for all hot pressed ZrB2 and ZrB2–SiC composites at room temperature were confirmed by Wiedemann–Franz analysis by using measured electrical conductivity of these materials at room temperature. It was found that electronic thermal conductivity dominated for all monolithic ZrB2 whereas the phonon contribution to thermal conductivity increased with SiC contents for ZrB2–SiC composites.  相似文献   

9.
A study was conducted of the effects of sintering temperature and CaF2 additives on densification, microstructure, dielectric property and thermal conductivity of AlN–BN composites. Increasing sintering temperature and CaF2 contents help to improve the densification, thermal conductivity, and purification of the grain boundaries. Thermal conductivity value reached 110 W m−1 K−1 for AlN–BN composites with 3 wt.% CaF2 and sintered at 1850 °C. Increasing sintering temperature decreases relative dielectric constant and tan δ. The increase in CaF2 content increases relative dielectric constant and decreases tan δ. Relative dielectric constants values were between 7.29 and 7.64 and dielectric loss tangent values ranged from 6.36 to 7.83 × 10−4 at 1 MHz.  相似文献   

10.
The thermal properties were investigated for hot‐pressed zirconium diboride—transition‐metal boride solid solutions. The transition‐metal additives included hafnium, niobium, tungsten, titanium, and yttrium. The nominal additions were equivalent to 3 at.% of each metal with respect to zirconium. Powders were hot‐pressed to nearly full density at 2150°C using 0.5 wt% carbon as a sintering aid. Thermal diffusivity was measured using the laser flash method. Thermal conductivity was calculated from the thermal diffusivity results using temperature‐dependent values for density and heat capacity. At 25°C, the thermal conductivity ranged from 88 to 34 W·(m·K)?1 for specimens with various additives. Electrical resistivity measurements and the Wiedemann–Franz law were used to calculate the electron contribution of the thermal conductivity and revealed that thermal conductivity was dominated by the electron contribution. The decrease in thermal conductivity correlated with a decrease in unit cell volume, indicating that lattice strain may affect both phonon and electron transport in ZrB2.  相似文献   

11.
The pressure p-temperature T projections of solid-liquid-gas (S-L-G) three-phase coexistence lines for the carbon dioxide + tetradecanoic acid (C14H28O2) system, the carbon dioxide + hexadecanoic acid (C16H32O2) system, and the carbon dioxide + 1-hexadecanol (C16H34O) were measured by the first melting point method in which the initial appearance of the liquid phase was observed. The profiles of the p-T projections of the S-L-G lines for the carbon dioxide + acid systems are similar to each other, the S-L-G equilibria for the carbon dioxide + acid systems are, however, different from that for the carbon dioxide + 1-hexadecanol systems. The experimental p-T projections of the S-L-G lines were also correlated by the Peng-Robinson equation of state and the van der Waals type mixing rules with two binary interaction parameters introduced into attraction term and size terms, respectively. The present model gave good correlation results for all of the experimental S-L-G lines with maximum average absolute relative deviations of 0.075% for the carbon dioxide + tetradecanoic acid system, 0.14% for the carbon dioxide + hexadecanoic acid system and 0.28% for the carbon dioxide + 1-hexadecanol system, respectively.  相似文献   

12.
《Ceramics International》2023,49(10):15459-15467
Heat dissipation films originating from polymer composite with improved thermal conductivity are becoming potential candidates for effective thermal management of next-generation electronic products, profiting from their soft nature and good electrical insulation. In this work, a novel hybrid filler composed of carbon nitride (C3N4) and graphene oxide (GO) is synthesized and further introduced into the cellulose matrix. The electrical insulation of the composite is maintained, attributed to the low electrical conductivity of C3N4. Meanwhile, the bridged chemical bond between C3N4 and GO reduces the interfacial thermal resistance and promotes heat transfer. By hot-pressing the aerogel intermediate, the directional arrangement of fillers is achieved, leading to favorable flexibility and mechanical behavior, and superior in-plane thermal conductivity (5.74 W/mK) of the composite. Thermal characterizations reveal that lower thermal contact resistance (TCR), improved thermal stability, and the relatively lower coefficient of thermal expansion (CTE) together facilitate its practical application in thermal management. The practical performance test is also performed which fully demonstrates its favorable temperature regulation ability, reflected by a 2.7 °C temperature decrement observed in the cell phone battery heat dissipation test.  相似文献   

13.
A 1-D mathematical model describing the thermal decomposition, or calcination, of a single gibbsite particle to alumina has been developed and validated against literature data. A dynamic, spatially distributed, mass and energy balance model enables the prediction of the evolution of chemical composition and temperature as a function of radial position inside a particle. In the thermal decomposition of gibbsite, water vapour is formed and the internal water vapour pressure plays a significant role in determining the rate of gibbsite dehydration. A thermal decomposition rate equation, developed by closely matching experimental data reported previously in the literature, assumes a reaction order of 1 with respect to gibbsite concentration, and an order of −1 with respect to water vapour pressure. Estimated values of the transformation kinetic parameters were k0 = 2.5 × 1013 mol/(m3 s) for the pre-exponential factor, and Ea = 131 kJ/mol for the activation energy. Using these kinetic parameters, the gibbsite particle model is solved numerically to predict the evolution of the internal water vapour pressure, temperature and gibbsite concentration. The model prediction was shown to be very sensitive to the values of heat transfer coefficient, effective diffusivity, particle size and external pressure, but relatively less sensitive to the mass transfer coefficient and particle thermal conductivity. The predicted profile of the water vapour pressure inside the particle helps explain some phenomena observed in practice, including particle breakage and formation of a boehmite phase.  相似文献   

14.
This work proposes a transient heat transfer model to predict the thermal behaviour of wood in a heated bed of sand fluidized with nitrogen. The 2-D model in cylindrical coordinates considers wood anisotropy, variable fuel properties, fuel particle shrinkage, and heat generation due to drying and devolatilization. The influence of initial fuel moisture content, thermal diffusivity, particle geometry, shrinkage, external heat transfer coefficient, chemical reaction kinetics and heats of reaction on temperature rise is presented. The cylindrical wood particles chosen for the study have length (l) = 20 mm, diameter (d) = 4 mm and l = 50 mm and d = 10 mm, both having an aspect ratio (l/d) of 5. The bed temperature is 1123 K. The model prediction is validated using measurements obtained from literature. The temperature rise in the wood particle is found to be sensitive to changes in the moisture content and thermal diffusivity and heat of reaction (in larger particles) while it is less sensitive to the external heat transfer coefficient and chemical kinetics. Also shrinkage is found to have a compensating effect and it does not have any significant influence on the temperature rise. Beyond an aspect ratio of three, the wood particle behaves as a 1-D cylinder.  相似文献   

15.
Alcoholysis and kraft lignin-based polycaprolactones (LigPCL) were synthesized by the polymerization of ε-caprolactone which was initiated by the hydroxyl (OH) group in lignin. LigPCL-based polyurethanes were also prepared from LigPCL. The caprolactone (CL)/OH ratio of the CAPCLs was changed from 1 to 25 mol mol−1. Thermal properties of the LigPCL and LigPCL-based polyurethane (PU) sheets were studied by differential scanning calorimetry (DSC). Glass transition temperature (Tg), heat capacity difference at TgCp) cold crystallization temperature (Tcc) and melting temperature (Tm), were determined by DSC. The main chain motion of lignin is observed in the whole CL/OH ratio. When CL/OH ratio exceeds 5 mol mol−1 in the LigPCL samples and 10 mol mol−1 in the LigPCL-based PU samples, the crystalline region which is organized by the PCL chain association is observed. It was found that PCL chain association is controlled by both chain length and chemical cross linking.  相似文献   

16.
The effects of nano-structured carbon fillers [fullerene C60, single wall carbon nanotube (SWCNT), carbon nanohorn (CNH), carbon nanoballoon (CNB), and ketjenblack (KB)] and conventional carbon fillers [conductive grade and graphitized carbon black (CB)] on conductivity (resistance), thermal properties, crystallization, and proteinase K-catalyzed enzymatic degradation of poly(l-lactide) [i.e., poly(l-lactic acid) (PLLA)] films were investigated. Even at low filler concentrations such as 1 wt%, the addition of SWCNT effectively decreased the resistivity of PLLA film compared with that of conventional CB, and PLLA-SWCNT film with filler concentration of 10 wt% attained the resistivity lower than 100 Ω cm. The crystallization of PLLA further decreased the resistivity of films. The addition of carbon fillers, except for C60 and CNB at 5 wt%, lowered the glass transition temperature, whereas the addition of carbon fillers, excluding C60, elevated softening temperatures, if an appropriate filler concentration was selected. On heating from room temperature, cold crystallization temperature was determined mainly by the molecular weight of PLLA, whereas on cooling from the melt, the carbon fillers, excluding KB, elevated the cold crystallization temperature, reflecting the effectiveness of most of the carbon fillers as nucleating agents. Despite the nucleating effects, the addition of carbon fillers decreased the enthalpy of cold crystallization of PLLA on both heating and cooling. The addition of CNH, CNB, and CB elevated the starting temperature of thermal degradation of PLLA, whereas the addition of SWCNT reduced the thermal stability. Furthermore, the addition of C60 and SWCNT enhanced the enzymatic degradation of PLLA, whereas the addition of KB and CNB disturbed the enzymatic degradation of PLLA. The reasons for the effects of carbon fillers on the physical properties, crystallization, and enzymatic degradation of PLLA films are discussed.  相似文献   

17.
Thermal properties were characterized for zirconium diboride produced by reactive hot pressing and compared to ZrB2 ceramics that were hot pressed from commercial powders. No sintering additives were used in either process. Thermal conductivity was calculated from measured values of heat capacity, thermal diffusivity, and density for temperatures ranging from 298 to 2273 K. ZrB2 produced by reactive hot pressing achieved near full density, but had a small volume fraction of ZrO2, whereas hot‐pressed ZrB2 contained porosity and carbon inclusions. Reactive hot pressing produced a ceramic with higher thermal diffusivity and heat capacity, resulting in thermal conductivities of 127 W·(m·K)?1 at 298 K and 80 W·(m·K)?1 at 2273 K, which were up to ~30% higher than typically reported for hot‐pressed ZrB2.  相似文献   

18.
We report measured temperatures inside the single polymer fuel cell, and thermal conductivities and heat transfer coefficients calculated from these. Temperatures were measured next to the membrane on its two sides, and in the gas channels. Higher temperatures (5 °C or more at 1 A/cm2) were found at the membrane electrode surface than in the gas channels. The thermal conductivity of the membrane (λm) was small, as expected from the properties of water and polymer, while the heat transfer coefficient of the electrode surfaces (λs) was smaller, 1000±300 W/m2 K for a layer thickness of 10 μm. The real coefficient is smaller, since the measured temperatures are systematically smaller than the real ones. The electrode surface heat transfer coefficient is not previously reported. The average value for the catalyst surface plus gas diffusion layer was 0.2 W/m K.  相似文献   

19.
Pure, nano-sized LiFePO4 and LiFePO4/C cathode materials are synthesized by spray-drying and post-annealing method. The influence of the sintering temperature and carbon coating on the structure, particle size, morphology and electrochemical performance of LiFePO4 cathode material is investigated. The optimum processing conditions are found to be thermal treatment for 10 h at 600 °C. Compared with LiFePO4, LiFePO4/C particles are smaller in size due to the inhibition of crystal growth to a great extent by the presence of carbon in the reaction mixture. And that the LiFePO4/C composite coated with 3.81 wt.% carbon exhibits the best electrode properties with discharge capacities of 139.4, 137.2, 133.5 and 127.3 mAh g−1 at C/5, 1C, 5C and 10C rates, respectively. In addition, it shows excellent cycle stability at different current densities. Even after 50 cycles at the high current density of 10C, a discharge capacity of 117.7 mAh g−1 is obtained (92.4% of its initial value) with only a low capacity fading of 0.15% per cycle.  相似文献   

20.
This work reports experimental results on the heat transfer between a fluidised bed of fine particles and a submerged surface. Experiments have been carried out using different bed materials (polymers, ballotini, corundum, carborundum and quartz sand) with Archimedes number between 2 and 50. Dry air at ambient pressure and temperature has been used as fluidising gas. Three different exchange surfaces, namely a sphere and two cylinders with different base diameter and same height, have been used.Experimental results show that the heat transfer coefficient increases with particle Archimedes number and is almost independent from particle thermal conductivity for Kp/Kg > 30. Finally, the comparison of heat transfer coefficient for the different surfaces shows that the effect of the surface geometry may account for a 30% variation in the heat transfer coefficient, with higher differences occurring for coarser particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号