首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用分步变形法对TA15合金在10 kN高温电子拉伸试验机上进行了超塑性拉伸试验,研究了变形温度和预变形量对该合金超塑性性能及微观组织演变。结果表明:变形温度为850~950℃和预变形量为100%~200%时,TA15合金呈现出良好的超塑性;变形温度为900℃和预变形量为150%时,该合金的超塑性能最好,最大延伸率为1456%;变形温度为950℃时,该合金的超塑性能降低,延伸率仅为188%。TA15合金的微观组织状态显示:该合金在拉伸变形过程中微观组织保持等轴状,但是随着变形温度的升高,晶粒开始长大,变形温度越高,晶粒长大越显著。  相似文献   

2.
研究了一种新型超塑性钛合金在不同加工条件下的力学性能及显微组织。结果表明:合金棒材经过轧制后的显微组织较原始锻态的组织均匀细小;室温力学性能分析结果表明,轧制棒材的力学性能较锻棒的力学性能优异;棒材超塑性分析结果表明,细化晶粒可改善合金的超塑性能,该合金的最佳超塑性变形温度在750℃左右,最大伸长率达到1164%,超塑性变形机制研究表明对变形起主导作用的是晶界行为和扩散蠕变等共同作用的结果。  相似文献   

3.
针对GH4169合金进行了不同变形工艺的超塑性拉伸和热处理试验,研究变形及热处理对合金塑性的影响。结果表明,锻态合金分别经过890℃×10h+950℃×1h和890℃×10h+950℃×3h的退火热处理后,发现延长第二次退火时间可有效细化晶粒;利用最大应变速率敏感指数法(最大m值法)进行不同温度的超塑性拉伸试验,在950℃时合金的伸长率最佳;延长第二次退火时间可显著提高试样的伸长率;采用基于最大m值法的应变诱发超塑性法对合金进行超塑性拉伸试验,可知预变形拉伸后,保温20min后其伸长率最佳;在890℃×10h+950℃×3h热处理后合金伸长率达566%,较单纯m值法拉伸后合金的伸长率显著提高。  相似文献   

4.
采用恒应变速率拉伸方法研究了应变速率对TA15合金超塑性的影响。结果表明,在变形温度为900℃,应变速率为3.3×10-4~1.1×10-2s-1时,随应变速率的降低,伸长率逐渐增大,最大伸长率为1074%。同时,在高应变速率条件下也获得了良好的超塑性能。此外,应力-应变曲线中出现了较长的应变硬化阶段,应变速率越低,应变硬化阶段越长,并且有利于超塑性变形。微观组织观察表明应变速率对TA15合金显微组织演变有着显著的影响,应变速率越低,显微组织粗化越严重。高应变速率条件下,由于动态再结晶的作用,试样变形区出现了很多新的细小等轴α相。  相似文献   

5.
TA15合金应变速率循环超塑性研究   总被引:1,自引:1,他引:0  
采用应变速率循环法研究了TA15合金的超塑性.在变形温度分别为850、900、950℃,应变速率范同为1×10-5~1×10-3S-1的试验条件下.讨论了工艺参数对流变应力、m值及其超塑性的影响.结果表明,TA15合金具有较好的超塑性,最佳变形温度为900℃,伸长率为412%.  相似文献   

6.
基于变应变速率敏感性指数m值的方法对TA15合金超塑性进行了研究,在1053~1223 K温度范围内进行了超塑性拉伸实验。结果表明:TA15合金的延伸率为580%~1922%。微观组织分析表明合金变形过程中晶粒随温度升高而逐渐长大,但仍保持等轴状,在1223 K时发生αβ相转变,超塑性能严重下降。与恒应变速率法相比较,该方法大幅度提高了TA15合金的超塑性能。此外,超塑性变形过程中,力学性能和微观组织演变特征与Ashby-Verrall模型较吻合,因此推断出TA15合金基于变m值法超塑性变形的主要机制是扩散蠕变协调的晶界滑移。  相似文献   

7.
钛合金的晶粒尺寸对其超塑性能有着显著影响。采用三维镦拔形变热处理工艺对供货态的TC4合金进行细晶化处理,然后采用恒应变速率法对细晶TC4合金的超塑性进行了研究。结果表明:采用三维镦拔工艺能简单、有效地细化TC4合金的原始组织,平均晶粒尺寸由原始组织的50μm细化至15μm。在变形温度800~950℃,应变速率为2.2×10-4s-1的试验条件下,处理后的TC4合金均表现出良好的超塑性能,最大伸长率达到747%。  相似文献   

8.
研究了SPZ钛合金的超塑性变形及其变形前后的显微组织。研究结果表明,大塑性变形后,SPZ合金轧棒组织为利于超塑性的细小均匀的等轴组织。SPZ合金在740℃~800℃之间具有超塑性,在760℃,初始应变速率为1.11×10~(-3)s~(-1)时,合金的最大超塑延伸率可达2149%;应变速率为1.11×10.~(-2)s~(-1)时,超塑延伸率仍可达1380%。超塑性变形后的晶粒尺寸比变形前粗大,变形温度越高,晶粒长大程度越大。变形前合金的晶粒尺寸为0.89μm;应变速率为2.22×10~(-3)s~(-1)时,在740℃,760℃,780℃变形后晶粒尺寸分别为1.51μm,2.33μm,3.21μm。SPZ合金超塑性变形的微观机制足以晶界滑动为主,晶内变形以及位错蠕变起协调作用。合金超塑性变形与类流态的关系还有待深入研究。  相似文献   

9.
大晶粒AZ91镁合金的超塑变形行为   总被引:3,自引:0,他引:3  
研究了晶粒尺寸为 85 μm的大晶粒AZ91镁合金在高温下的超塑拉伸变形行为。结果表明 ,大晶粒AZ91合金能在高温下获得超塑性。在 35 0℃下 ,应变速率为 3× 10 - 4s- 1 拉伸时 ,最大伸长率达2 2 8%。 30 0℃下 4 0 %的预应变可以改善合金在更高温度下的超塑性能。在超塑拉伸变形初期 ,动态再结晶细化了合金的晶粒 ,呈现出细晶超塑的特征 ;随着应变量的增加 ,合金的晶粒长大趋势不明显。大晶粒AZ91合金的超塑性变形机制是晶界滑移控制下的孔洞连接协调机制。  相似文献   

10.
采用最大m值法、恒应变速率法在850~910℃下测试TC4钛合金板材的超塑性性能,分析了工艺参数对TC4钛合金板材的流动应力、应变速率敏感性指数和微观组织演变的影响。结果表明:该合金的最佳超塑性变形温度在850℃左右,在该温度下的基于最大m值法、恒应变速率法拉伸的伸长率均达到了最大且分别为1031%和631%,而在850℃下最大m值法拉伸能获得材料的最佳超塑性;当变形温度为850~910℃时,最佳变形速率0.00031~0.001 s~(-1);随变形温度的升高、应变速率的降低,该合金的流动应力降低,最大为70 MPa;该合金在850℃、应变ε=0.1条件下的应变速率敏感性指数m值最大且为0.58,并随着变形温度、应变量的增加而降低:超塑性变形中其内部发生了明显的动态再结晶,温度越高,晶粒越粗大。  相似文献   

11.
在温度为700~870℃和应变速率为0.001~0.01s~(-1)条件下对多道次温轧TC4钛合金板材进行超塑性拉伸试验,研究该合金的低温超塑性变形行为与断裂机制。发现最佳超塑性变形条件为800℃,0.001s~(-1),试验获得的最大伸长率为1 550%。在温度为700℃、应变速率为0.001s~(-1)和0.01s~(-1)时,伸长率分别为576%和356%。多道次温轧形成的细小晶粒、破碎弥散分布的β相以及变形过程的动态再结晶均有利于提高合金的超塑性。合金的应变速率敏感系数m值随温度升高而增加;在800℃和870℃超塑性变形时的激活能分别为226.8和220.2kJ/mol,在700℃时激活能增大到377.5kJ/mol。合金超塑性断裂是由内部孔洞长大连接和外部缩颈共同作用导致的。  相似文献   

12.
采用形变诱导法对TB8钛合金进行了超塑性拉伸实验,研究了变形温度、预变形量和中间保温时间对该合金超塑性性能及微观组织演变的影响。结果表明:与恒应变速率法拉伸相比,该方法拉伸后合金的超塑性得到大幅度地提升;变形温度为750℃、预变形量为50%和保温时间为20 min时,该合金的超塑性能最好,伸长率为796.1%。预变形阶段,脱溶析出和再结晶双重优化作用使亚稳态β相转变为细小均匀的再结晶组织,在后续变形过程中,细小弥散的α相既能抑制再结晶晶粒过分长大,又能在一定程度上使再结晶组织发生应变集中而破碎。超塑性变形后合金的微观组织仍然保持较好的等轴状,具有典型的超塑性变形特征。  相似文献   

13.
研究了TB8合金在不同变形条件下的超塑性及其显微组织。结果表明,变形温度为690~840℃、应变速率为1.0×10~(-4)~1.0×10~(-3)s~(-1)时,TB8钛合金均具有超塑性。750℃、1.0×10~(-4)s~(-1)拉伸时,合金塑性最佳,伸长率为524.9%。变形过程中,变形软化和加工硬化相互抵消,表现为传统的超塑性变形稳态流动特征。变形温度、应变速率和变形程度对合金的超塑性、显微组织均有明显影响。应变速率越低,等轴β相晶粒尺寸越大。拉伸温度升高,β相晶粒尺寸增大,α相颗粒逐渐被溶解,β相饱和化,但仍能保持一定的等轴度。随着变形程度增大,β相晶界和基体弥散析出的α相越多,细小、弥散分布的α相可以抑制晶粒的过分长大,使合金塑性得到改善。  相似文献   

14.
变形工艺对TC11钛合金超塑性的影响   总被引:1,自引:0,他引:1  
为了研究TC11(Ti-6.5Al-3.5Mo-1.5Zr-0.3Si)钛合金的超塑性变形行为,采用两种改锻工艺细化坯料原始组织,然后在电子拉伸试验机上分别以恒速、恒应变速率和最大m值法进行拉伸实验.结果表明,TC11钛合金在α+β区通过三维镦拔改锻工艺,可以获得晶粒度为6μm的细晶等轴组织,而在β区拔长改锻的组织为粗大的魏氏组织.在变形温度为900℃的条件下,TC11钛合金通过最大m值超塑变形方式获得了异常高的超塑性,最大伸长率达到2300%;而采用常规的恒应变速率和恒速超塑变形,伸长率分别为1147%和1100%.说明TC11钛合金在α+β区通过三维镦拔改锻细化晶粒后,以最大m值超塑变形是获得较好超塑性的有效方法.  相似文献   

15.
针对5E83合金(Er、Zr微合金化5083合金),采用超塑性拉伸试验、扫描电镜(SEM)、电子背散射衍射(EBSD)和透射电镜(TEM),探究了Er、Zr微合金元素、晶粒尺寸、变形温度、应变速率对合金超塑性的影响。通过再结晶退火、空冷和水冷的搅拌摩擦加工(FSP),分别获得了晶粒尺寸为7.4、5.2、3.4μm的完全再结晶组织,作为初始状态进行超塑性拉伸。结果表明,初始晶粒尺寸越细小,超塑性伸长率越高。当晶粒尺寸>5μm时,超塑性变形过程晶粒粗化缓慢,细化初始晶粒可显著提高超塑性;而当晶粒尺寸<5μm时,超塑性变形过程晶粒粗化严重,进一步细化初始晶粒对超塑性的提高有限。不同变形温度、应变速率的超塑性拉伸结果显示在变形温度为450~540℃、应变速率为1.67×10-4~1.67×10-1 s-1,超塑性伸长率随变形温度和应变速率的提高呈现先上升后下降再上升的趋势;变形温度为520℃、应变速率为1.67×10-3 s-1条件下,水冷FSP态合金获得最大伸长率330%...  相似文献   

16.
对钛合金体育器械进行了超塑性变形行为研究,分析了不同变形温度和应变速率下合金的断后伸长率、显微组织的变化规律,并分析了超塑性变形机理。结果表明,变形温度的升高或应变速率的降低可使得试验合金的断后伸长率增加,不同温度和应变速率下合金的断后伸长率都超过了100%;随着变形温度的升高,合金中α相的数量逐渐减少,形态也逐渐从沿变形应力方向拉长的长条状向短棒状或者等轴状转变;随着应变速率的降低,合金中α相的尺寸逐渐增大,且β晶粒逐渐从沿应力方向拉长状转变为等轴状,β相小角度晶界数量也呈现逐渐减少的趋势;试验合金超塑性变形的主要机制为位错运动,而少量再结晶晶粒的产生并不是超塑性的主要机制。  相似文献   

17.
利用Gleeble-1500D热模拟试验机对板厚为4 mm的TA7 ELI材料在变形温度为800、850、900、950和1000℃,应变速率为0.01 s~(-1)和0.001 s~(-1)下进行高温拉伸实验,获得材料发生超塑性变形的温度区间和应变速率范围。采用炉中高温拉伸实验对Gleeble实验结果进行验证。得出在950~1000℃范围内,应变速率低于0.001s~(-1)时,TA7 ELI钛合金高温拉伸会出现超塑性变形。伸长率最高可达260%。在应变速率0.001 s~(-1)、800℃时,TA7钛合金的断口组织中有动态再结晶现象。1000℃时,断口出现较为粗大的层片状α组织和明显的晶粒长大现象。m和n值都随着温度的升高而增大,在950℃时到达最大值。硬化现象能够有效的抑制颈缩,变形温度为950℃时,材料的硬化和软化达到较好的平衡,易获得较大的伸长率。  相似文献   

18.
采用拉伸试验机等研究形变热处理对发动机用Ti Al合金超塑性性能和显微组织的影响。结果表明:超塑性变形处理后Ti Al合金等轴α相的平均晶粒尺寸约为1.5μm, Ti Al合金在900℃时达到最优的超塑性,其伸长率为1188%。其应力-应变曲线属于明显的应变软化曲线类型。超塑性变形处理后,Ti Al合金断口与夹头区域的显微组织发生粗化作用,合金基体中的α晶粒内及其晶界部位形成了众多位错结构,其晶粒依然维持着良好的等轴形态。  相似文献   

19.
TC6钛合金的超塑变形机制研究   总被引:2,自引:0,他引:2  
提出了一种全新的超塑性研究方法:基于m值的高效超塑变形机制。采用该方法对TC6钛合金进行高温拉伸实验,研究其超塑性能,并与最大m值法超塑性进行比较分析。实验结果表明,细晶组织的该合金具有优良的超塑性,最佳变形温度在900℃,最大m值超塑变形可以获得20倍的最大延伸率;基于m值的高效超塑变形可以显著提高超塑成形效率,在获得延伸率为16.96倍的优良超塑性前提下,成形效率可提高13倍。  相似文献   

20.
在温度830~890℃和应变速率0.0005~0.005 s~(-1)下对Ti6Al4V钛合金冷轧板材进行超塑性拉伸实验。利用光学显微镜和扫描电镜观察变形后的微观组织和断口形貌。研究了该合金的超塑性变形行为和变形机理。结果表明:在应变速率为0.0005、0.005 s~(-1)时,随着变形温度的升高,伸长率先升高后降低;在应变速率为0.001 s~(-1)时,随着变形温度的升高,伸长率逐渐降低;在830℃和0.001 s~(-1)条件下伸长率达到最大值1259.0%;超塑性最优变形参数区间为温度830~850℃、应变速率0.0005~0.001 s~(-1)。合金的应变速率敏感性指数m值随温度升高先增加,850℃时达到最大值0.472,随后逐渐减小;超塑性变形下的平均激活能为259 k J/mol。超塑性变形过程发生了明显的动态再结晶,微观组织完全转变为等轴组织。超塑性变形的主要机制为晶界滑移。Ti6Al4V合金板材超塑性拉伸断裂属为于沿晶断裂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号