共查询到20条相似文献,搜索用时 15 毫秒
1.
《稀有金属材料与工程》2015,(11)
对航空发动机用新型镍基高温合金GH3230在不同温度和应变速率下进行了高温拉伸-断裂试验,分析了应变速率和温度对该合金高温力学性能的影响。结果表明,随着应变速率的增加和温度的下降,合金的塑性流动应力有所提高,加工硬化指数n下降。从流变应力、应变速率和温度的相关性,得到应变速率敏感系数m是一个独立于温度的常量,并计算出GH3230合金的变形激活能Q=441kJ/mol。GH3230合金的热变形温度在1273 K左右时,合金在变形过程中能够充分再结晶,并得到晶粒细小、均匀的组织。SEM断口分析表明GH3230合金在高温下(1144~1273 K)应变率范围为10~(-3)~10~(-1)s~(-1)时的拉伸断裂都是由损伤引起的韧性断裂,且温度对断口形貌影响不大,但应变速率增大会使韧窝尺寸和深浅变小。 相似文献
2.
利用Gleelbe热模拟实验以及有限元分析了高应变速率对690合金热变形行为以及挤压可行性的影响,并根据实验和有限元结果进行挤压。结果表明:690合金的流变应力对应变速率均较敏感;大于10 s-1 的高应变速率下,变形温升显著上升;再结晶晶粒尺寸在低应变速率下,随应变速率的升高而降低,高应变速率则随应变速率的增加而增大;挤压时,最大挤压力随着应变速率的上升先降低再升高;根据实验以及有限元计算结果,成功挤出了合格的690管材。 相似文献
3.
4.
《中国有色金属学会会刊》2016,(3)
为了研究GH696合金的热变形行为,在880~1120℃、0.01~10 s~(-1)条件下对其进行一系列等温压缩试验,所有试样的变形量为50%。计算各变形条件下的应变速率敏感性指数(m)及应变硬化指数(n),并分析加工参数对m和n值的影响。结果表明,流变应力随着应变速率的增大及变形温度的降低而增大。m值随变形温度的升高而增大,随应变速率的增大而减小,而n值则随着变形温度的升高而减小。此外,建立了GH696合金热变形过程中的流变应力模型,由模型计算得到的流变应力与实验结果吻合较好。 相似文献
5.
利用物理模拟实验方法对具有不同晶粒尺寸的690合金试样进行热压缩变形实验,变形温度范围为1100~1200℃,应变速率分别为0.1,1,10s-1,获得了合金的流变应力数据,并对合金变形后的组织特征进行了分析,建立了包含初始晶粒度参数的本构关系模型。结果表明:晶粒尺寸增大使690合金高温变形时的流变应力增加,发生动态再结晶的临界应变增大,动态再结晶体积分数减小,根据所建立的流变应力本构模型计算出的流变应力值与实验值相近,从而完善了690合金的热变形本构方程。 相似文献
6.
采用Gleeble-3500热模拟机研究了GH708合金在变形温度1000℃~1200℃,应变速率为0.001s-1~1s-1条件下的热变形行为.确定了GH708合金的热变形方程,建立了其热加工图(Processing Map),并通过组织观察对其热加工图进行了解释.GH708合金的热变形激活能Q为493 kJ/mol;不同真应变下的热加工图相似,随着变形温度的升高及应变速率的降低,能量消耗效率η逐渐升高.真应变为0.6时,在变形温度为1150℃左右、应变速率为0.001 s-1时,能量消耗效率达到峰值,约为56%.该结果为GH708合金的热加工工艺优化提供了理论依据. 相似文献
7.
GH708高温合金热变形行为 总被引:1,自引:0,他引:1
采用Gleeble-3500热模拟机研究了GH708合金在变形温度1000℃~1200℃,应变速率为0.001s-1~1s-1条件下的热变形行为.确定了GH708合金的热变形方程,建立了其热加工图(Processing Map),并通过组织观察对其热加工图进行了解释.GH708合金的热变形激活能Q为493 kJ/mol;不同真应变下的热加工图相似,随着变形温度的升高及应变速率的降低,能量消耗效率η逐渐升高.真应变为0.6时,在变形温度为1150℃左右、应变速率为0.001 s-1时,能量消耗效率达到峰值,约为56%.该结果为GH708合金的热加工工艺优化提供了理论依据. 相似文献
8.
GH761变形高温合金的热变形行为 总被引:2,自引:0,他引:2
镍基GH761合金热模拟压缩实验表明,当变形温度Td一定时,随应变速率ε的降低,变形峰值应力σp和稳态流动开始应力σs日及与它们对应的应变εp和εs均降低;当应变速率一定时,随Td的升高,σp和σs以及εs均降低,但εp基本不变.细化原始晶粒可提高再结晶形核率,在此基础上降低变形温度和提高变形速率是细化最终晶粒的重要途径.当应变达到完全再结晶时,合金具有最均匀且细小的组织;超过这一应变值,晶粒开始长大.GH761合金的热变形本构方程为:ε=6.5×106σp4.86exp(-461×103/RT). 相似文献
9.
研究了电场处理后的长期时效GH4199合金在不同应变速率下的拉伸变形行为.结果表明,随应变速率增加合金屈服强度升高,应变速率低于3.3×100 s-1时,应变速率敏感指数m值较低且随应变速率的增加无明显变化;当应变速率超过3.3×100 s-1时,m显著升高,当应变速率为3.3×101 s-1时,m达到0.16;随应变速率增加合金拉伸塑性呈下降趋势;在较低应变速率范围内变形时,电场处理后产生的退火孪晶是改善合金塑性的主要因素,随着应变速率的提高,晶内开动的滑移系数量增加,塑性变形能力随之提高,但存在于合金晶界处的连续分布的碳化物对晶界的弱化作用逐渐显露,晶界与晶内塑性变形能力差异增大,晶界成为断裂的主要途径,导致合金塑性降低. 相似文献
10.
GH674高温合金的热变形行为 总被引:5,自引:1,他引:5
采用Gleeble-1500热模拟机对GH674高温合金在应变速率为0.01s-1~1.0s-1、变形温度为950℃~1200℃、真应变为1的条件下的热变形行为进行了研究。结果表明,在试验研究的变形条件下,GH674型高温合金在热压缩变形过程中发生明显的动态再结晶;用Zener-Hollomon参数的指数函数能较好地描述该合金高温变形时的流变行为;所获得的峰值应力热变形方程为σp=21.3139ln.ε+9.580495×105/Τ-538.11638;其热变形激活能Q为373.7102803kJ/mol。 相似文献
11.
12.
13.
GH141合金的热态变形特性 总被引:1,自引:0,他引:1
采用Gleeble-3500热模拟实验机研究了GH141合金在1020~1170℃、应变速率在0.01~10 S-1的热态变形特性,分析了流动应力与热力参数的关系,并建立了GH141合金在热态变形过程中的本构方程.采用Quantiment-500型自动图像分析仪定量测定了动态再结品品粒尺寸和再结晶体积分数与Z参数的关系.建立了该合金的动态再结晶数学模型.结果表明,该数学模型的计算结果与实验数据很好地吻合,从而为GH141合金的锻造工艺制定与质量控制提供了理论依据. 相似文献
14.
采用非持续加热方式设计非等温热模拟压缩实验,模拟不同终锻温度条件下GH4738高温合金的热变形行为,并结合组织观察分析终锻温度对GH4738合金组织均匀性以及后续热处理过程组织遗传性的影响规律.研究结果表明,在相同始锻温度条件下,终锻温度过低会抑制GH4738合金热变形过程中动态再结晶的发生,从组织上表现为再结晶程度较... 相似文献
15.
采用热模拟试验机对铸态和不同程度均匀化处理后的GH141合金进行压缩和拉伸变形,研究了合金的热变形行为以及热变形后的再结晶程度.结果表明:铸态GH141合金热变形过程中开始再结晶温度为1050℃,随着变形温度升高,再结晶越充分,变形抗力越低.不同程度均匀化处理后,合金再结晶程度相比未均匀化处理的合金更低,但均匀化处理后... 相似文献
16.
通过拉伸试验研究了GH690合金从298~623K的变形行为,用光学显微镜、扫描电镜和透射电镜观察了变形组织。结果表明,合金在298K拉伸时能够通过孪生协调变形,生成的形变孪晶阻碍了位错的滑移,从而使合金获得了较高的加工硬化速率,导致合金的强度和塑性较高。随着形变温度的升高,合金通过孪生协调变形的能力降低,变形机制由孪生转变为滑移,滑移产生的加工硬化效应小于孪生,因此合金的强度和塑性随之降低。 相似文献
17.
通过热压缩实验研究变形温度和应变速率对纯铜热变形行为的影响,确定了应变硬化率、动态再结晶临界应力、饱和应力、动态回复体积分数和动态再结晶体积分数的表达式。结合热加工图,得到纯铜的失稳区域主要位于400~450℃、0.001~0.05 s~(-1)和450~750℃、0.05~1 s~(-1)区间,稳态区域的变形机制主要为动态再结晶。对流变应力进行预测,预测结果与实验结果吻合较好。 相似文献
18.
通过热压缩实验研究了经均匀化处理后的GH4141合金在变形温度为1000~1200℃和应变速率为0.01-5 s-1条件下的热变形行为,构建了GH4141合金的热变形本构方程,并分析了热变形过程中微观组织的演变规律。结果表明,GH4141合金的峰值应力和峰值应变均随着变形温度的升高和应变速率的减小而显著降低。当变形温度为1100~1150℃时,由于动态再结晶的发生,动态软化逐渐与加工硬化达到平衡,流变应力基本不变,真应力-真应变曲线趋于平稳状态。基于Zener-Hollomon参数的双曲正弦模型可以很好地描述GH4141合金热变形过程中峰值应力与变形温度和应变速率的关系。GH4141合金热变形过程中的再结晶程度随着变形温度升高、应变速率减小和变形量增加而增加。当变形温度≥1100℃,应变速率为0.01~0.1 s-1,变形量≥50%时,合金发生完全动态再结晶。 相似文献
19.
镍基高温合金GH4037圆柱形试样以不同的应变速率0.01、0.1和1 s-1在固态温度(1200、1250、1300℃)和半固态温度(1340、1350、1360、1370、1380℃)下进行压缩试验,研究GH4037合金的高温变形行为及组织演变。结果表明,与固态温度相比,半固体温度下的流动应力下降较快。此外,当应变速率为1 s-1时,半固态温度下的流动应力在达到初始峰值应力后继续增大。随着变形温度的升高,初始固相晶粒和再结晶晶粒尺寸增大。在半固态温度下,固相晶粒为等轴晶,液相存在于晶界和晶内。以晶界膨胀为特征的不连续动态再结晶(DDRX)是GH4037合金的主要形核机理。 相似文献