首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
研究MoS_2含量对纯铜的显微组织、密度、硬度和耐磨性能的影响。采用纯铜粉和MoS_2粉末,通过机械球磨和热压法,制备含0~10%(质量分数)MoS_2颗粒的铜基复合材料。在干滑动摩擦条件下,采用销-盘式磨损实验装置,测试材料的耐磨性能,固定滑动速率为0.2 m/s。硬度测试结果显示,MoS_2含量为2.5%的复合材料的硬度达到峰值。当载荷一定时,Cu/2.5MoS_2复合材料具有最低的摩擦因数和磨损量。当载荷从1 N增加到4 N,不同含量增强相复合材料的摩擦因数均减小,同时,磨损量增大。磨损表面和磨屑的SEM照片显示,Cu/MoS_2复合材料的磨损机理由纯铜的粘着磨损为主转变为磨粒磨损和剥层磨损相结合的机制。  相似文献   

2.
选择搅拌摩擦点焊技术,进行了Cr12MoV失效模具的修复工艺研究,并进行了显微组织、表面硬度、耐磨损性能和热疲劳性能的测试分析。结果表明,搅拌摩擦点焊可成功实现Cr12MoV失效模具的高质量修复;与失效模具相比,搅拌摩擦点焊修复后模具的表面硬度可提高18 HRC、磨损体积减小82.4%、0℃冲击韧度是修复前的13倍;优选的搅拌摩擦点焊工艺参数为:搅拌头旋转速度1250 r/min、焊接时间5 s、轴肩下压量0.3 mm。  相似文献   

3.
采用搅拌铸造法制备了SiC_p颗粒含量为10%的SiC_p/A356铝基复合材料熔体,分别在0.1(重力)、50、75和100MPa的挤压压力下进行挤压铸造,并将制得的复合材料与HT250进行对磨试验,研究了不同挤压压力下复合材料的摩擦磨损性能。结果表明,随着挤压压力增加,复合材料的孔隙率减小,致密度和硬度均增大;在铸态和T6态下,复合材料的磨损率减小,摩擦因数增大。挤压压力有效提高了颗粒与基体的界面结合强度,挤压压力为100 MPa时,SiC_p发生破裂而脱落,磨损机理为磨粒磨损。  相似文献   

4.
采用粉末冶金方法制备石墨/二硫化钼增强镁基自润滑复合材料,并分别表征这些复合材料的显微组织、物理性能、力学性能和磨损性能。利用XRD手段鉴定复合材料中的Gr/MoS_2相。显微组织观察表明,Gr/MoS_2颗粒均匀地分散在镁基体中。在室温条件下施加载荷5 g并保持15 s,测试复合材料的显微硬度,得到所有复合材料的显微硬度为VHN 29-34。使用显微硬度、拉伸和压缩试验研究材料的力学性能,并用扫描电子显微镜分析材料的断口形貌,得到Mg-10MoS_2复合材料最高的硬度、抗压强度和拉伸强度。用销-盘式摩擦仪测试烧结复合材料的摩擦因数和磨损量。另外,通过磨损表面特征,利用SEM系统分析复合材料的摩擦磨损机制。结果表明,与石墨相比,二硫化钼的摩擦因数和磨损有所减少。  相似文献   

5.
利用搅拌摩擦加工(FSP),将纳米尺寸的氧化铈(CeO_2)和碳化硅(SiC)颗粒以单独和混合形式嵌入Al5083合金基体,制备表面复合材料,并研究这些增强相对合成的表面复合层显微组织和耐磨性能的作用。在室温下用销-盘式磨损试验机检测合成的单独和混合表面复合层的磨损特性。用光学显微镜和扫描电镜观察FSPed区和磨损表面的显微组织。在熔核区可观察到显著的晶粒细化和均匀分布的增强颗粒。与基体金属相比,所有复合材料都具有更高的硬度和更好的耐磨性。其中,混合复合材料Al5083/CeO_2/SiC的耐磨性能最好,摩擦因数最低,而Al5083/SiC的硬度最高,是Al5083基体合金硬度的1.5倍。混合复合材料表面耐磨性能的提高是由于CeO_2颗粒的固体润滑效果。非复合材料中主要的磨损机制是严重的粘着磨损,当存在增强颗粒时转变为磨粒磨损和分层。  相似文献   

6.
采用搅拌摩擦工艺合成Cu/B4C表面复合材料,并分析搅拌速度对该复合材料显微组织和滑动磨损行为的影响。搅拌速度以200 r/min从800变化至1200 r/min,横向速度、轴向力、沟槽宽度及搅拌头外形保持不变。采用光学和扫描电子显微镜对所制备表面复合材料的显微组织进行观察。采用销盘滑动磨损试验装置研究该表面复合材料的滑动磨损性能。结果表明:搅拌速度对表面材料的面积和B4C颗粒的分布具有显著影响。在较高的搅拌速度下此复合材料中B4C颗粒分布均匀;而在低搅拌速度下B4C颗粒分布均匀性较差。此外,本文报道搅拌速度对复合材料的颗粒尺寸、硬度、磨损率、磨损表面和磨屑的影响。  相似文献   

7.
采用搅拌摩擦工艺合成Cu/B4C表面复合材料,并分析搅拌速度对该复合材料显微组织和滑动磨损行为的影响。搅拌速度以200 r/min从800变化至1200 r/min,横向速度、轴向力、沟槽宽度及搅拌头外形保持不变。采用光学和扫描电子显微镜对所制备表面复合材料的显微组织进行观察。采用销盘滑动磨损试验装置研究该表面复合材料的滑动磨损性能。结果表明:搅拌速度对表面材料的面积和B4C颗粒的分布具有显著影响。在较高的搅拌速度下此复合材料中B4C颗粒分布均匀;而在低搅拌速度下B4C颗粒分布均匀性较差。此外,本文报道搅拌速度对复合材料的颗粒尺寸、硬度、磨损率、磨损表面和磨屑的影响。  相似文献   

8.
采用真空半固态搅拌铸造法制备40%(体积分数)的高含量SiC_p/A356复合材料;然后以40%SiC_p/A356复合材料为原料,采用"稀释法"分别制备出体积分数10%、20%、30%衍生SiC_p/A356复合材料。通过对比分析高体积含量复合材料稀释制备的衍生复合材料(衍生材料)与直接搅拌制备的搅拌SiC_p/A356复合材料(搅拌材料)的断口形貌,发现衍生材料的断口质量及颗粒分布均匀程度均优于相同颗粒含量搅拌材料的;不同颗粒含量的孔隙率、布氏硬度、力学性能变化规律具有稀释效应,即颗粒含量越低,对应数值越小;相同颗粒含量衍生材料的硬度比搅拌材料的高3%~5%左右,力学性能比搅拌材料的力学性能高9%~13%。  相似文献   

9.
以Fe-20wt%Cu合金为基体,利用热压烧结法制备Fe-20wt%Cu基摩擦材料,研究了MoS_2含量对Fe-20wt%Cu基摩擦材料的组织、摩擦学性能及摩擦机理的影响。分析了MoS_2含量对复合材料密度、硬度、孔隙率和摩擦性能的影响。结果表明,MoS_2含量为3%时,该材料的摩擦系数为0.5973,磨损率为0.58×10-9kg/(N·m),此时试样摩擦磨损性能最佳。总体而言随着MoS_2含量的增加,磨损后试样表面的性能先升高后降低。  相似文献   

10.
对工业纯铜(纯度99.8%)和铜锌合金(黄铜)进行水下搅拌摩擦加工。搅拌摩擦加工的刀具呈螺纹锥状,由碳化钨制成,其转速为1800 r/min,横移速度为4 mm/min,将试样浸泡在带循环系统的水箱中。为了评估加工次数对样品显微组织和力学性能的影响,进行6道次加工。采用光学显微镜对商业纯铜样品的显微组织进行研究,结果表明,加工后材料的晶粒尺寸明显减小。同时,样品横截面的硬度较母材增高。水下搅拌摩擦加工样品的X射线衍射谱与母金属的相比,其峰值更短、更宽,谱的背景增大,表明形成非晶/超细晶组织。采用针-盘法对试样的磨损行为进行研究,结果表明,与母材相比,加工后试样的摩擦因数降低。磨损和硬度试验结果表明,水下搅拌摩擦加工可显著提高工业纯铜和黄铜的耐磨性和硬度。  相似文献   

11.
对纯铜与AA5754合金进行对接搅拌摩擦焊接.为了降低金属间化合物的有害影响,在搅拌摩擦焊(FSW)接头中添加纳米SiC强化颗粒.采用拉伸试验、显微硬度试验、扫描电镜和X射线衍射分析方法研究焊接接头的性能.结果显示,当焊接速度为50 mm/min、转速为1000 r/min时接头的性能最好.纳米SiC颗粒的存在使搅拌区...  相似文献   

12.
以A357铝合金和SiC_p粉作为原料,采用双级搅拌桨在不同工艺参数下对SiC_p含量为20%的A357复合材料进行搅拌铸造,研究了不同工艺参数对SiC_p分布均匀性的影响。对制得的SiC_p/A357复合材料进行T6热处理,采用扫描电镜、硬度测试及拉伸试验,分析了热处理前后组织和力学性能的变化。结果表明,采用双级搅拌桨在搅拌温度为610℃,搅拌转速为800 r/min,搅拌时间为20 min下制备的复合材料中SiC_p分布均匀性最佳。经T6热处理后,复合材料的抗拉强度和硬度明显上升,抗拉强度达到345 MPa,硬度(HB)为123.3,相比铸态分别提高66%和48.6%。断口分析表明,SiC_p/A357复合材料的断裂机制为界面脱粘、Si C颗粒的断裂和基体合金的韧性断裂的混合机制。  相似文献   

13.
通过真空热压烧结工艺制备了单一纳米、单一微米及其混合颗粒增强的Al-Si复合材料,测试了这些颗粒增强AlSi复合材料的摩擦磨损性能,并分析了其磨损机理。结果表明,与基体材料相比,颗粒增强Al-Si复合材料的体积磨损量明显降低,当纳米SiC_p含量为3%时,随着微米SiC_p含量的增加,纳微米SiC_p/Al-Si复合材料的体积磨损量先减小后增加。当增强颗粒含量为3%的纳米+15%的微米时,复合材料的体积磨损量最小,耐磨性较基体材料提高58.2%。利用扫描电镜对纳微米SiC_p/Al-Si复合材料的磨损形貌进行观察,发现复合材料的磨损机制主要为磨粒磨损。  相似文献   

14.
目的利用慢速搅拌摩擦加工,获得工业纯钛细晶组织,提高其耐磨性能。方法采用慢速搅拌摩擦加工对TA2工业纯钛退火板材进行表面处理,获得细晶结构。使用EBSD技术和显微硬度检测仪对表面微观结构及力学性能进行表征。采用球盘式摩擦磨损试验仪对搅拌摩擦加工前后的样品进行摩擦磨损性能测试,计算磨损率,并使用SEM及EDS分析磨痕特征。结果搅拌摩擦加工处理后,工业纯钛晶粒尺寸显著细化,小角度晶界比例较高,加工硬化程度高。搅拌摩擦加工样品氧化磨损较为严重,粘着磨损程度减小。搅拌摩擦加工后,样品主要磨损方式由粘着磨损和二体磨损转变为氧化磨损和三体磨损。经过180 r/min、25 mm/min处理的工业纯钛磨损率仅为未加工样品的1/4左右。结论慢速搅拌摩擦加工可同时提高工业纯钛表面硬度及耐磨损性能,较小的晶粒尺寸及合适的加工硬化程度可减轻粘着磨损和磨粒磨损。  相似文献   

15.
采用搅拌摩擦工艺以A356合金为基体金属制备B_4C/A356复合材料。利用人工神经网络(ANN)和非支配排序遗传算法-Ⅱ研究复合材料的显微组织和力学性能。首先,研究不同加工条件下制得的复合材料的显微组织。结果表明,搅拌摩擦工艺参数如搅拌头的旋转速度、横向移动速度和形状显著影响基体中初始Si颗粒的尺寸、复合材料层中B_4C增强剂的分散效果及体积分数。采用高旋转/移动速度比和螺纹销形状搅拌头能获得较好的颗粒分布、较细的Si颗粒和较少的B_4C团聚体。其次,通过硬度和拉伸试验研究复合材料的力学性能。结果显示,经搅拌摩擦工艺处理后样品的断裂机理由脆性断裂转变为延性断裂。最后,利用人工神经网络技术建立了搅拌摩擦工艺参数与复合材料显微组织和力学性能的关系。采用结合多样性保护机制的NSGA-Ⅱ法,即ε消除算法得到搅拌摩擦工艺参数的Pareto最优解集。  相似文献   

16.
在6082铝板的凹槽中填充SiC颗粒(平均粒径为27.5μm),用一种新型多步搅拌摩擦加工(FSP)法制备Al/SiC梯度功能复合材料(FGM)。为了得到预先设定的梯度结构,使用3种工具进行FSP,每种工具的搅拌针长度不同,SiC颗粒的体积分数也不同。FSP在室温下进行,其工艺参数如下:1~3道次、旋转速度为900r/min、前进速度为20mm/min。利用扫描电子显微镜(SEM)和三维光学显微镜对梯度功能样品的显微组织进行表征,且测试其耐磨性和显微硬度等力学性能。结果表明,随着FSP道次的增加,SiC颗粒分散更加均匀,材料的显微硬度增加。与未加工的6082铝合金相比,经3道次加工后,其显微硬度提高51.54%。添加SiC颗粒后,Al/SiC梯度功能使复合材料的耐磨性提高。  相似文献   

17.
采用粉末冶金方法制备(Cu-10Sn)-Ni-MoS_2复合材料,研究镍包二硫化钼对复合材料显微组织、力学性能和摩擦学性能的影响。通过单独添加Ni和MoS_2的对比实验,分析Ni和MoS_2对复合材料性能影响的机理。结果表明,二硫化钼颗粒周围包裹的一层镍能有效减小二硫化钼和铜基体的反应速率,显著改善基体的结合情况。当镍包二硫化钼的质量分数为12%时(C12),复合材料表现出优异的力学性能和摩擦学性能。C12复合材料在载荷为8 MPa、线速度为0.25 m/s及油润滑条件下的平均摩擦因数为0.0075;载荷为4 MPa、线速度为0.25 m/s及对偶材料40Cr干摩擦条件下的平均摩擦因数为0.1769。  相似文献   

18.
采用金相显微镜对7075铝合金与H68黄铜异种材料搅拌摩擦焊接头组织进行观察、采用X射线衍射仪(XRD)对焊接接头中相结构进行分析,并采用显微硬度计对焊接接头硬度分布进行测试.结果表明,搅拌针的旋转频率为1 100 r/min,焊接速度为80 mm/min时,焊接接头未形成金属间化合物,焊核区晶粒细化,且显微硬度值增加...  相似文献   

19.
采用熔体内部喷粉联合搅拌和超声处理制备了纳米SiC_p增强0.2SiC_p/ZA-32.5复合材料,研究了不同超声功率处理后铸态复合材料的干摩擦行为和磨损性能。结果表明,超声处理不仅能有效分散纳米SiC_p,还能细化铸态组织;干摩擦时,在稳定阶段铸态试样的磨损率随超声功率的增加而减小,同时,磨损亚表面温度和磨损纵断面显微硬度随着超声功率的增加而增加,接触面硬度最低,亚接触面硬度增加,远离接触面的硬度最大,并且摩擦磨损中摩擦接触面的硬度比铸态的降低了14%。经800W超声处理试样的摩擦磨损率达到0.45μm/m,说明超声处理能显著提高纳米SiC_p增强的锌基复合材料在摩擦所产生的高温工况下的耐磨性。  相似文献   

20.
通过搅拌摩擦加工技术将SiC颗粒加入到A356铝合金中制备铝基复合材料,搅拌摩擦加工参数为:旋转速度1800r/min和行进速度127mm/min。基体金属A356铝合金为亚共晶AlSi枝晶组织,而搅拌区的组织与基体金属区不同。共晶Si和SiC颗粒均匀分布于初始铝固溶体中,而经历了剧烈变形的热力影响区的共晶Si和SiC颗粒呈沿旋转方向分散的特征。搅拌区的硬度比基体金属的高,因为在搅拌区存在的缺陷明显减少,共晶Si和SiC均匀分布在其中。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号