首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
采用放电等离子烧结技术制备高体积分数SiC_p/Al复合材料,研究SiC颗粒级配对复合材料微观结构、热和力学性能的影响。结果表明:放电等离子烧结制备的SiC_p/Al复合材料由SiC和Al两相组成,SiC颗粒基本呈均匀随机分布、层次明显,SiC颗粒与Al基体界面结合强度高且无Al_4C_3等脆性相生成。在双粒径级配的SiC_p/Al复合材料中,SiC体积分数从50%增加到65%时,其相对密度从99.93%下降到96.40%;其中,当SiC体积分数为60%时,复合材料的相对密度、热导率、平均热膨胀系数(50~400℃)和抗弯强度分别为99.19%、227.5W/(m·K)、9.77×10~(-6) K~(-1)和364.7MPa。  相似文献   

2.
采用压力浸渗法制备了SiC的体积分数分别为25%、30%、35%、40%、45%、50%的SiC_p/2024和SiC_p/6061铝基复合材料,并研究了SiC_p体积分数对复合材料的组织和性能的影响,以及复合材料在热处理状态的力学性能。结果表明,随着SiC_p体积分数增加,SiC_p/2024和SiC_p/6061复合材料的硬度、抗拉强度和抗压强度均明显增加,伸长率明显降低,材料断裂方式为脆性断裂。其中当SiC_p体积分数为50%时,SiC_p/2024和SiC_p/6061复合材料的硬度(HB)分别达到243.34和154.97,抗压强度分别达到840.63和519.83MPa,抗拉强度分别达到340.2和300.5MPa。经过固溶时效处理后,复合材料的强度、硬度均提高,伸长率均降低,其中SiC_p体积分数较高的复合材料经热处理后性能提升更明显,SiC_p/6061复合材料的性能提升比SiC_p/2024更明显。  相似文献   

3.
采用粉末冶金法制备了SiC体积分数为30%的SiC_P/6061Al复合材料。分析了该复合材料加热过程的热化学变化和烧结后的相产物。观察了该复合材料的显微组织。测试了该复合材料的密度和力学性能。研究了烧结温度对该复合材料组织和性能的影响。结果表明:制备SiC_P/6061Al复合材料合适的烧结温度为550~605℃。随烧结温度的提高,复合材料的密度和抗拉强度均增大;在600℃烧结时制备的复合材料的基体与增强体的界面结合情况良好。  相似文献   

4.
采用AlSiTiCrNiCu高熵合金颗粒作为增强相增强铝合金,研究高熵合金体积分数与烧结温度对复合材料导热性能的影响。结果表明,(AlSiTiCrNiCu)p/6061Al复合材料的热导率随着AlSiTiCrNiCu颗粒体积分数的增大而降低,颗粒体积分数为20%的(AlSiTiCrNiCu)p/6061Al复合材料的热导率为61.6 W/m·K,相比于基体6061Al合金降低了52%。当增强相体积分数为10%时,随着烧结温度的升高,复合材料的热导率降低,烧结温度为540℃时,复合材料的热导率为65.8 W/m·K。  相似文献   

5.
采用放电等离子烧结技术成功制备具有高热学和力学性能的50vol.%SiC_p/Al复合材料,研究烧结温度对复合材料热导率、热膨胀系数和抗弯强度的影响。结果表明,在520℃下烧结获得的复合材料,导热系数为189W/(m·K),热膨胀系数(50~200℃)为10.03×10~(-6)K~(-1),抗弯强度为649 MPa。Al合金基体与SiC颗粒之间的界面结合良好,复合材料接近完全致密,因而具有较高的热学性能和力学性能。为满足高性能电子封装材料的制备提供一种新的可行方法。  相似文献   

6.
采用直接电热法真空触变成形工艺制备体积分数为60%的SiC_p增强6061铝基复合材料,研究了固溶-时效处理对复合材料抗弯强度及硬度等力学性能的影响,探讨了SiC_p表面改性对复合材料微观组织和热膨胀性能的影响。研究表明,复合材料在530℃×11h固溶、175℃×15h时效工艺下,获得最高的硬度和抗弯强度;高温氧化和搅拌酸洗能使SiC_p尖角产生钝化,提高增强颗粒在基体中分布的均匀性,使SiC_p与铝基界面结合得到改善,孔隙率减少,抗弯强度提高,热膨胀系数提高,且酸洗态性能优于相应氧化态性能。  相似文献   

7.
采用AlSiTiCrNiCu高熵合金颗粒(HEA_p)作为增强相增强铝合金,研究高熵合金颗粒体积分数和烧结温度对HEA_p/6061Al复合材料热膨胀系数(CTE)的影响。结果表明:25~100℃时,6061Al合金和AlSiTiCrNiCu高熵合金(HEA)的热膨胀系数分别为23.04×10~(-6)/℃和9.85×10~(-6)/℃;随着高熵合金颗粒体积分数的增高,HEA_p/6061Al复合材料的热膨胀系数明显降低。当保持高熵合金颗粒体积分数不变时,随着温度的升高,HEA_p/6061Al复合材料的热膨胀系数呈现出先增大后保持不变的规律。  相似文献   

8.
采用粉末冶金的方法制备12%SiC_p/6066Al(体积分数)复合材料,研究了热压与热挤压成形温度对复合材料性能的影响。结果表明,热挤压有利于SiC颗粒在基体中的再分布且是粉末冶金法制备SiC颗粒增强铝基复合材料的必要工艺,而热压则有利于提高增强颗粒与基体的界面结合强度;在高于基体固相点温度热压烧结而低于固相点温度热挤压时,金属基体强度高且界面结合牢固,复合材料的性能最佳。本工艺中12%SiCp/6066Al的最佳热压温度为560℃,热挤压温度为430℃。  相似文献   

9.
高熵合金具有高硬度、高强度、耐磨、耐腐蚀、高温热稳定等优异性能,源于金属-金属间天然的界面结合特性,高熵合金与铝合金有良好的界面润湿性。本文采用AlSiTiCrNiCu高熵合金颗粒作为增强相增强铝合金,研究高熵合金体积分数与烧结温度对复合材料导热性能的影响。结果表明,(AlSiTiCrNiCu)p/6061Al复合材料的导热率随着AlSiTiCrNiCu颗粒体积分数的增大而降低,20 vol.% (AlSiTiCrNiCu)p/6061Al复合材料的导热率为61.59 W/(m?K),相比于基体6061Al合金降低了52 %。当体积分数为10%时,随着烧结温度的升高,复合材料的导热率降低,烧结温度为540℃时,复合材料的导热率为65.80 W/(m?K)。TEM分析,高熵合金与铝合金的界面为扩散性界面,没有发生界面发应,有助于导热率的降低。  相似文献   

10.
采用机械搅拌制备SiC_p/Al Si7Mg2复合材料,对比不同体积分数(3.5vol.%、10vol.%、20vol.%和25vol.%)的Si C颗粒对复合材料力学性能的影响,当α-Si C颗粒的粒径为20μm时,20vol.%SiC_p/Al Si7Mg2复合材料铸态力学性能较高,其硬度达到HB 76.3。将20vol.%SiC_p/Al Si7Mg2复合材料做538℃/10 h+160℃/6 h热处理以后进行拉伸试验,复合材料抗拉强度311 MPa,屈服强度290 MPa,硬度HB 142,弹性模量90 GPa。进一步研究复合材料可重熔性,20vol.%SiC_p/Al Si7Mg2复合材料经过一次重熔后相比原铸态复合材料屈服强度提高了14.6%,硬度提高了8.8%,继续对熔体进行不同时间的静置和二次重熔,复合材料力学性能下降。  相似文献   

11.
采用放电等离子体烧结(SPS)工艺在610℃制备30%~50%(质量分数)纳米石墨片(GNF)/6061Al基复合材料,研究烧结压力及GNF含量对复合材料显微组织和力学、热学性能的影响.结果表明,SPS有效抑制GNFs/6061Al基复合材料中Al4C3等界面反应产物的生成.随着GNF含量的增加,GNFs团聚程度增加,...  相似文献   

12.
为提高SiC_p/6061Al复合材料的性能,采用不同方法对SiC颗粒进行了表面处理,并通过直热烧结法制备了不同SiC表面改性状态的SiC_p/6061Al复合材料。研究表明:经过酸洗+高温氧化处理后SiC_p表面生成了一层Si O2膜,SiC_p的棱角发生钝化,颗粒形貌发生改变;经过碱洗+K_2ZrF_6处理后,SiC_p表面得到粗化,并在SiC_p表面析出K_2ZrF_6。对SiC_p进行不同表面处理后,制得的SiC_p/6061Al复合材料的性能都得到很大改善,而且碱洗+K_2ZrF_6处理这种表面处理方法对复合材料性能的改善效果最佳。  相似文献   

13.
通过微波烧结法制备了6061铝合金和20TiC/6061铝基复合材料,研究了烧结温度对材料组织和性能的影响。结果表明,通过微波烧结法制备的6061铝合金,随着烧结温度升高,冶金结合程度提高,组织和性能也更好。在试验烧结温度范围内,致密度最终基本稳定在96%左右;当烧结温度为560℃时,TiC/6061铝基复合材料,增强相尺寸细小且分布较均匀,基体致密、结合良好。XRD物相分析显示,6061铝合金中只有Al相存在,复合材料中只有基体相Al和增强相TiC,未生成其他相。  相似文献   

14.
利用化学镀铜方法对β-Si C颗粒进行表面改性,结合热压烧结技术制备了50%Si C体积分数的β-Si C_P/Cu复合材料,探讨了β-Si C颗粒化学镀铜工艺和烧结温度对该复合材料微观结构、相对密度、抗弯强度和热膨胀系数的影响。结果表明:镀铜后β-Si C颗粒表面均匀地包覆一层铜膜,烧结后复合材料Si C颗粒在基体中分布均匀,界面结合良好。β-Si C_P/Cu复合材料相对密度和抗弯强度随烧结温度升高而增大;热膨胀系数随烧结温度升高而降低。利用化学镀改性β-Si C颗粒制备的β-Si C_P/Cu复合材料性能均优于未利用化学镀改性β-Si C颗粒制备的复合材料,这是由于β-Si C颗粒镀铜可有效改善Si C-Cu的界面结合状态。当烧结温度为750℃时,β-Si C_P/Cu复合材料的相对密度和抗弯强度最高,热膨胀系数最低。  相似文献   

15.
采用化学镀覆的方法对SiC_p表面进行镀Cu处理,以2024铝合金为基体,通过直热法粉末触变成形工艺制备了SiC_p体积分数为60%的Al基复合材料,研究了Cu镀层对复合材料显微组织、相组成、断裂行为、抗弯强度和热膨胀系数的影响。研究发现,SiC_p经过镀Cu处理后,复合材料的组织由AlCu、Al_2Cu为主的金属间化合物组成,对复合材料的性质和性能产生了较大影响。新相AlCu、Al_2Cu的出现,显著降低了复合材料的热膨胀系数。与未镀Cu的SiC_p/2024Al复合材料相比,镀Cu后复合材料的致密度为99.15%,提高了1.57%;热膨胀系数为5.73×10~(-6) K~(-1),降低了32.4%;抗弯强度为283 MPa,降低了10.2%。  相似文献   

16.
采用机械高能球磨法制备出TiC/W纳米晶复合粉体,复合粉体经压制并在1823K烧结制备得到TiC/W复合材料.研究了机械球磨对TiC/W复合材料组织结构和力学性能的影响.结果表明,球磨后的烧结组织均匀致密,没有缝隙和空洞出现.机械球磨能够降低烧结温度,提高块体致密度和室温抗弯强度;抗弯断口形貌在球磨后逐渐变平整,断裂形貌由沿晶断裂转变为穿晶断裂.  相似文献   

17.
采用搅拌铸造法制备了体积分数为6%的SiCp/6061复合材料。通过高温蠕变试验、金相观察(OM)、断口形貌扫描(SEM)及能谱分析(EDS),研究其不同温度下的蠕变性能并分析蠕变断裂机制。结果表明:温度对SiCp/6061铝基复合材料的高温蠕变性能有很显著的影响,温度越高,蠕变性能越差;在250℃、80 MPa的应力下,SiCp/6061铝基复合材料的蠕变寿命约为14 h,而6061铝合金经280 min即发生断裂。由此可以认为,SiCp/6061铝基复合材料比基体合金具有更好的抗高温蠕变能力;复合材料的蠕变断裂机制是首先沿SiCp/Al界面产生塑性撕裂的裂纹源,微裂纹沿晶界扩展,最终发生断裂。  相似文献   

18.
采用鳞片石墨粉和纯铜粉为原料,通过真空热压烧结制备高导热石墨/铜复合材料。研究了石墨体积分数对该复合材料热导率和抗弯强度的影响。结果表明:热压温度对该复合材料的界面影响较大,在热压温度970℃,该复合材料界面结合最好;随石墨体积分数的增加,复合材料的致密度下降,而热导率先升后降。当石墨体积分数为60%时,该复合材料的热导率达到最大,为680 W/(m·K);随着石墨体积分数的增加,该复合材料的抗弯强度下降。  相似文献   

19.
采用热压烧结-热挤压复合工艺制备了SiC体积分数为35%的SiCp/6061Al基复合材料。观察了复合材料的金相组织和断口形貌,检测了复合材料的密度和抗拉强度。分析了热压和热挤压复合工艺对复合材料的影响。结果表明:采用热挤压二次成形后,增强体在基体中的分布均匀化,与挤压方向平行;复合材料的致密度达到98.09%,抗拉强度达到248 MPa;基体组织晶粒细化,并产生大量的位错和亚晶组织;SiCp/6061Al复合材料断裂机理主要由6061Al基体的韧性断裂和增强体SiC颗粒的脆性断裂组成。  相似文献   

20.
采用真空热压烧结法制备了φ(SiC_p)=30%的SiC/6061铝基复合材料,观察复合材料的显微组织,检测复合材料的密度和抗拉强度,研究烧结压力对复合材料性能的影响。结果表明,采用真空热压烧结法制备的SiC/6061Al复合材料,没有新相生成;随着烧结压力的增大,复合材料的密度增大,抗拉强度也增大;复合材料基体与增强体之间的界面结合情况良好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号