首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用等温压缩试验研究不同原始组织对Ti-5Al-2Sn-2Zr-4Mo-4Cr合金流动应力、应变速率敏感性指数、应变硬化指数和表观变形激活能的影响。结果表明:原始组织为片层组织的Ti-5Al-2Sn-2Zr-4Mo-4Cr合金具有更高的峰值应力和流动软化效应,当变形温度高于或等于810°C、应变速率为0.1~5.0 s-1时,原始组织为等轴组织的Ti-5Al-2Sn-2Zr-4Mo-4Cr合金存在初始屈服现象。当应变为0.5~0.7、变形温度较低、应变速率为0.01 s-1时,原始组织为等轴组织的Ti-5Al-2Sn-2Zr-4Mo-4Cr合金的应变速率敏感性指数值较大,这主要归因于其显微组织演变特征。隋着变形的进行,原始组织为片层组织的Ti-5Al-2Sn-2Zr-4Mo-4Cr合金发生了α片层弯曲和动态球化现象,这使得其应变硬化指数变化显著。当应变为0.15~0.55时,原始组织为片层组织的Ti-5Al-2Sn-2Zr-4Mo-4Cr合金的表观变形激活能更大。  相似文献   

2.
考察了Ti-5Al-4Sn-2Zr-1Mo-0.25Si-1Nd合金焊接接头力学性能。结果表明,Ti-5Al-4Sn-2Zr-1Mo-0.25Si-1Nd钛合金的焊接热影响区存在硬化倾向,塑性不足。焊前预热150℃可使焊接热影响区塑性明显改善。通过改变焊缝合金系统和焊后热处理制度等工艺措施,可以调整焊缝的综合力学性能,使之达到技术指标要求。文中还探讨了Ti-5Al-4Sn-2Zr-1Mo-0.25Si-1Nd合金焊接脆性的机理,认为延晶界成串分布的富钕相和晶内的马氏体转变组织是根本原因。  相似文献   

3.
采用Gleeble-3500型热模拟试验机对Ti-10.2Mo-4.9Zr-5.5Sn合金进行等温恒应变速率压缩试验,研究其在变形温度为670~820℃,应变速率为0.001~10s~(-1)范围内的热变形行为,并计算了热变形激活能。结果表明,合金的流动应力对变形温度和应变速率较为敏感,变形温度升高和应变速率减小都会使流动应力降低。该合金的热变形激活能高于纯α钛和和纯β钛合金的自扩散激活能;采用多元线性回归方法建立Ti-10.2Mo-4.9Zr-5.5Sn合金的本构模型,经过误差计算,得出该模型的相关系数和平均相对误差分别为0.987 5和4.99%,精度较高。  相似文献   

4.
利用热加工图对具有针状初始组织的Ti-5.7Al-2.1Sn-3.9Zr-2Mo-0.1Si (Ti-6242S)合金的热变形特征进行分析。单轴热压缩试验的温度为850~1000℃,应变速率为0.001~1 s~(-1)。用热加工图确定合金的安全和不安全变形条件;利用扫描电镜(SEM)和光学显微镜(OM)分析合金的显微组织演变过程。研究发现,与在较低温度下变形相比,在1000℃下变形后合金在流动软化行为中的流动应力存在差异,这是由于显微组织发生变化。在950℃和0.001 s~(-1)条件下变形,应变为0.7的两相区加工图表现出较高的功率耗散效率,约为55%,主要是由于发生大量球化。随着应变速率的增加和温度的降低,片层α相的球化减少,而扭折增加;最终,流动行为的失稳区发生在温度为850~900℃、应变速率高于0.01 s~(-1)的条件下,其主要机制为局部流动和绝热剪切。综合考虑功率耗散效率和显微组织,理想的变形条件为:变形温度950~1000℃、应变速率0.001~0.01 s~(-1)。该合金的最佳变形条件为:950℃,0.001 s~(-1)。  相似文献   

5.
Ti-6.5Al-3.5Mo-1.5Zr-0.3Si合金β加工动态再结晶行为研究   总被引:1,自引:0,他引:1  
利用Thermecmastor-Z热模拟试验机,在变形温度102~1080℃和应变速率0.001~70 s-1范围内对原始等轴组织的Ti-6.5Al-3.5Mo-1.5Zr-0.3Si合金进行等温恒应变速率压缩实验,分析高温流动行为,构建基于动态材料模型的功率耗散图,并结合微观组织观察对其β加工的动态再结晶行为进行研究.结果表明,Ti-6.5Al-3.5Mo-1.5Zr-0.3Si合金在β单相区变形时,不同温度和应变速率下的流动应力曲线均呈稳态流动特征,但仅根据流动应力曲线并不能确定是否发生动态再结晶.根据功率耗散图分析和微观组织观察可知,Ti.6.5Al-3.5Mo-1.5Zr-0.3Si合金β加工易发生动态再结晶的热力参数范围为:变形温度.1020~1080℃,应变速率0.01~0.1 s-1,此区域功率耗散功率,,值都大于0.4,为实际β加工时优化的热力参数范围;应变速率过高或过低,均不易发生动态再结晶.  相似文献   

6.
采用Gleeble-1500热模拟试验机进行等温恒应变速率热压缩实验,探究了Ti-6.5Al-3.5Mo-1.5Zr-0.3Si合金在应变速率为0.1~10 s-1、变形温度为1173~1323 K及最大变形量为60%条件下的高温塑性变形行为。探究了工艺参数对真应力-真应变曲线的影响,采用Arrhenuis模型构建了耦合应变的本构方程,基于动态材料模型及Babu流变失稳准则构建了热加工图。结果表明,Ti-6.5Al-3.5Mo-1.5Zr-0.3Si合金的流动应力随应变速率的减小及变形温度的增加呈下降并趋于平稳的趋势,且温度敏感性在低温区比高温区强。真应力-真应变曲线在变形温度1173~1273 K下的α+β相区呈现出动态再结晶特征,在变形温度为1323 K的β相区呈现出动态回复特征。建立的耦合应变的Arrhenuis本构方程具有较高的预测精度。利用Ti-6.5Al-3.5Mo-1.5Zr-0.3Si合金热加工图,确定了该合金最优塑性变形工艺参数为变形温度为1230~1323 K和应变速率为0.1~0.816 s-1。  相似文献   

7.
在变形温度为920~1 100℃、应变速率为0.001~70.0s~(-1)条件下对Ti60合金进行了等温恒应变速率压缩试验,分析了合金的流动行为和塑性变形机制。结果表明,Ti60合金的流动应力对变形温度和应变速率均较敏感。在α+β两相区,随变形温度的升高,α相体积分数逐渐减少,片状组织球化率增高;在变形温度较低、应变速率较高时,易发生局部流动现象。在β单相区,应变速率较低时,β相易发生动态再结晶;应变速率较高时,易造成机械失稳。  相似文献   

8.
近来由于飞机高强框架和喷气发动机元件用β-Ti合金取代α β钛合金。因此,德国的J.D.PETERS和他的老师G.LUTJERING教授比较了高强β-CEZ钛合金和α β的Ti-6Al-4V合金的疲劳和断裂特性,β-Ti合金如Ti-17(Ti-5Al-2Sn-2Zr-4Mo-4Cr)和Ti-10V-2Fe-3Al已分别被用作喷气发动机压缩机和起落架材料,主要是因为它们的强度高于Ti-6Al-4V合金。他们首先比较了喷气发动机常用的Ti-6Al-4V合金和新近研制的β-CEZ(Ti-5Al-2Sn-4Zr-4Mo-2Cr-1Fe)合金的疲劳和断裂特性,以及屈服强度等性能,由于断裂韧性是压缩机和起落架构件设计…  相似文献   

9.
Ti-6.5Al-3.5Mo-1.5Zr-0.3Si合金本构关系的BP神经网络模型   总被引:2,自引:0,他引:2  
利用THERMECMASTOR-Z型热力模拟试验机,在变形温度为780~1 080 ℃,应变速率为0.001~70.0 s-1条件下对Ti-6.5Al-3.5Mo-1.5Zr-0.3Si合金进行等温恒应变速率压缩试验,获得不同变形温度、不同应变速率和不同真应变下的流动应力数据.结合试验数据和神经网络知识,构建了采用BP算法的人工神经网络,训练结束后的神经网络即成为Ti-6.5Al-3.5Mo-1.5Zr-0.3Si合金的一个知识基的本构关系模型.利用所建立的BP网络模型对材料的流动应力进行了预测,发现预测值与试验数据吻合良好,说明该BP网络本构关系模型具有较高的精度,可用于指导Ti-6.5Al-3.5Mo-1.5Zr-0.3Si合金热加工工艺的制定.  相似文献   

10.
研究Ti-5Al-2Sn-2Zr-4Mo-4Cr在退火过程中的显微组织演变。结果表明,合金在810°C、1.0 s~(-1)条件下经20%和50%的压缩变形后再在810°C进行退火处理,在前20 min退火过程中,β相楔入形成热沟槽十分充分,球化率迅速增大;随退火时间延长,球化率继续增加。对经较大变形程度(50%)的合金进行4 h的退火处理获得了近似完全球化的组织。合金在810°C、0.01 s~(-1)条件下经50%变形后再在810°C进行退火处理,在前20 min退火过程中,热沟槽作用并不明显,且保留了大量的大角度晶界。通过长时间退火,在大角度晶界、末端迁移和Ostwald熟化的共同作用下形成了项链状α相晶粒。因此,在Ti-5Al-2Sn-2Zr-4Mo-4Cr退火前应进行较高应变速率与较大程度的变形以获得等轴组织。  相似文献   

11.
Ti-25Al-14Nb-2Mo-1Fe合金的热变形行为及本构方程的建立   总被引:1,自引:0,他引:1  
通过热模拟压缩试验研究了Ti-25Al-14Nb-2Mo-1Fe合金在变形温度950~1100 ℃,变形速率0.001~1 s-1,最大变形程度50%条件下的热变形行为。结果表明:Ti-25Al-14Nb-2Mo-1Fe合金的流变应力对热变形工艺参数(变形温度和变形速率)的敏感性较高,其真应力-真应变曲线具有峰值应力、应变软化和稳态流动特征。采用Arrhenius双曲正弦函数和多元回归处理法确定了合金在试验条件下的应力指数n、变形激活能Q等材料参数,建立了Ti-25Al-14Nb-2Mo-1Fe合金高温变形本构关系模型。  相似文献   

12.
利用Gleeble-3800热模拟试验机,在变形温度为820~1060℃及应变速率为0.001~1 s~(-1)参数范围内对Ti-6Al-3Nb-2Zr~(-1)Mo钛合金进行等温恒应变速率压缩试验。建立了该合金的高温变形本构方程,得到两相区和单相区的表面激活能分别为764.714和126.936k J/mol。基于动态材料模型(DMM)和Prasad失稳准则建立了应变为0.4和0.7时的热加工图。分析加工图发现:Ti-6Al-3Nb-2Zr~(-1)Mo钛合金在840~1060℃,应变速率为0.001~0.1 s~(-1)之间主要发生动态再结晶(DRX)/球化,此区间变形时耗散率峰值51%分别出现在940℃/0.001 s~(-1)和880℃/1 s~(-1),其变形后微观组织演变机制与热加工图匹配较好,当变形发生在820℃,较高应变速率(≥1 s~(-1))下该合金加工时易发生流变失稳现象。  相似文献   

13.
通过等温压缩试验和金相显微镜分析研究具有等轴(α+β)晶粒初始组织的Ti-5Al-5Mo-V-1Cr-1Fe合金的高温压缩性能。基于温度校准的真应力-应变数据,建立了高精度本构模型和加工图。研究结果表明,压缩试样局域应变不均匀性随着温度的升高而减少,使得α相分布均匀。对于温度范围在800~840°C、应变速率为10 s~(-1)的形变条件下,α相的体积分数随温度升高而增加,而α相的平均晶粒尺寸随温度升高而缓慢减小,表明动态回复和动态再结晶同时发生。在温度范围为860~900°C、应变速率为10 s~(-1)的变形条件下,试样中观察到流变局部化和微弱的β相晶界。加工图分析表明,Ti-5Al-5Mo-5V-1Cr-1Fe合金的热加工适于在应变速率低于0.01 s~(-1)下进行,以便提高其加工性。  相似文献   

14.
[日刊《铸锻造与热处理》报道]美国人L·莱温提出,粉末冶金钛合金,经烧结加压成形后,于β温区进行固溶、加氢、脱氢处理能细化组织,提高合金的疲劳强度。他认为,这种方法适用于α型的Ti-5Al-2.5Sn,近α型的Ti-6Al-2Sn-4Zr-2Mo,α+β型的Ti-6 Al-4V、Ti-6Al-6V-2Sn,近β型的Ti-10V-2Fe-3Al,β型的βⅢ(Ti-11.5Mo-6Zr-4.5 Sn)等合金。莱温的这项科研成果已取得了美国专利。  相似文献   

15.
采用Gleeble-3500热模拟试验机研究了Ti-22Al-24Nb合金在温度为900~1 110℃和应变速率为0.01~10s~(-1)条件下的高温流动应力及微观组织,分析了应变速率和变形温度对高温流动应力及热变形组织的影响。结果表明,变形温度和应变速率对Ti-22Al-24Nb合金的流动应力随变形温度的升高而降低,随应变速率的增加而升高。在α_2+B_2两相区,高应变速率下(6)ε≥1.0s~(-1))进行变形时,合金显微组织发生局部塑性流动和绝热剪切。在B_2单相区,低应变速率(6)ε≤0.1s~(-1))进行变形时,有明显的动态再结晶晶粒产生。高应变速率下,原始B_2相晶粒被明显拉长,晶界多呈不连续状态;低应变速率下变形时,随变形温度升高,合金易发生动态再结晶,当变形温度高于990℃时出现明显的动态再结晶特征;高应变速率下变形时,晶界模糊,随变形温度降低,晶界几乎全部消失,合金易发生局部塑性流动和绝热剪切。  相似文献   

16.
通过热压缩模拟试验机Gleeble3500进行了Ti-5Al-5Mo-5V-3Cr-1Zr(Ti-55531)合金在β相区的热模拟压缩试验(变形温度为860、885、910、935℃,应变速率为0.001、0.01、0.1、1 s~(-1)),采用光学显微镜分析了材料的组织演化行为。结果发现,Ti-55531合金变形过程中的动态软化效应以动态回复为主,在低应变速率下,组织呈现再结晶特征。为了通过材料变形机制去描述流动应力行为,考虑加工硬化和动态软化机制对位错密度的影响,建立了Ti-55531合金在β相区的位错密度内变量本构模型。结果表明,该模型能够准确预测Ti-55531合金在β相区的热变形行为。  相似文献   

17.
对Ti-45Al-8Nb-0.2Si-0.3B(原子分数,%)合金进行热压缩实验,采用基于动态材料模型建立的加工图研究了在变形温度为950—1300℃,应变速率为0.001—10 s~(-1)条件下的热变形行为.结果表明:在热压缩过程中,高Nb-TiAl合金在不同变形温度和应变速率下表现出不同的流变行为.该合金在温度为950—1200℃,应变速率为1 10 s~(-1)和温度为1250—1300℃,应变速率为10 s~(-1)两个区域内易产生流变失稳现象.在温度为950 1100℃,应变速率为0.1—0.001 s~(-1)的区域和温度为1250—1300℃,应变速率为0.001—1s~(-1)的区域内合金发生了动态再结晶.在动态再结晶区域内功率耗散效率在40%—55%之间,热变形后组织细小均匀.该合金的功率耗散效率的峰值区为1150—1200℃,应变速率为0.001 s~(-1),峰值效率为64%,在此区间内合金发生超塑性变形.  相似文献   

18.
研究应变速率和变形温度对具有初始片状α相的47Zr-45Ti-5Al-3V合金在热变形过程α→β相转变的影响。结果表明,当变形温度为550°C时,α相的体积分数随应变速率的增加而降低;而当变形温度为600和650°C时,随应变速率从1×10~(-3) s~(-1)增大到1×10~(-2) s~(-1),α相的体积分数先增加到一个最大值,随后随应变速率的增加而逐渐下降;当变形温度为700°C时,整个变形过程中合金组织由单一β相组成。在一个给定的应变速率条件下,α相的体积分数随着变形温度的增加而降低。随着应变速率的降低和变形温度的增加,球状α相的体积分数和尺寸逐渐增加。当变形温度达到650°C和应变速率降低到1×10~(-3) s~(-1)时,片状α相完全转变为球状α相。α相的体积分数及形貌随应变速率和变形温度的变化显著影响合金的硬度。  相似文献   

19.
通过高温压缩模拟实验,分析了Ti-6Al-2Zr-1Mo-1V合金在变形温度为850~1100℃,应变速率为0.01~10 s-1条件下的高温变形力学行为规律,并利用线性回归方法计算了不同温度范围内的应力指数n和变形激活能Q,获得了该合金高温变形力学行为计算模型.结果表明,Ti-6Al-2Zr-1Mo-1V合金对变形温度和应变速率非常敏感.在恒温时流动应力随应变速率的增大而增大,在恒应变速率时随变形温度的升高而降低.在850~950℃时,n、Q分别为7.0874和610.463 kJ/mol;而在950~1100℃时,n=4.7324,Q=238.030 kJ/mol,该预测模型的计算值与实测值之间的相对误差分别为6.341%和6.957%.  相似文献   

20.
为了探究V和B元素复合添加对β型γ-TiAl合金的显微组织和变形机制产生的影响,本工作针对Ti-44Al-5Nb-1Mo合金和Ti-44Al-5Nb-1Mo-2V-0.2B合金,进行了不同温度和应变速率条件下的高温热压缩实验,利用SEM-BSE和TEM对组织进行表征,对比分析了其变形后的显微组织,研究了添加V和B对Ti-44Al-5Nb-1Mo合金的显微组织及热变形机制的影响。结果表明,2种Ti Al合金的显微组织差异较大,添加V和B可以显著改变TiAl合金对热变形的敏感性。Ti-44Al-5Nb-1Mo-2V-0.2B合金高温变形能力明显优于Ti-44Al-5Nb-1Mo合金。Ti-44Al-5Nb-1Mo合金的高温热变形以难变形片层团的偏转、变形带的产生为主,温度为1250℃时,其变形组织表现出较高的温度和应变速率敏感性,极易形成尺寸不均匀的近片层组织;对于Ti-44Al-5Nb-1Mo-2V-0.2B合金而言,升高变形温度或降低应变速率,既可以促进片层团内部的变形诱导L(α/γ)→α+γ+β/B2和γ→α相变,又可以促进α和β/B2相的球化/动态再结晶,从而大幅提高该合金的组织均...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号