首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
冷轧变形量对2519铝合金组织与力学性能的影响   总被引:3,自引:1,他引:2  
通过显微硬度、拉伸测试,透射电镜分析等手段研究了形变热处理工艺对2519铝合金组织与力学性能的影响.结果表明:冷轧变形加速了2519铝合金在165℃下的时效过程,缩短了峰值时效时间,并随冷轧变形程度的增加,析出强化相θ'相愈弥散、愈细小,这些弥散而细小的θ'相有利于阻碍位错的运动,从而提高合金的强度;随冷轧变形量的增加2519铝合金中的无沉淀析出带逐渐变窄,合金的伸长率逐渐降低.2519铝合金时效前的冷轧变形量应在10%~15%之间.  相似文献   

2.
通过DSC热分析、显微硬度测试、透射电镜分析等研究了预变形对2E12铝合金时效析出过程的影响。结果表明:2E12铝合金表现为双阶段时效硬化特征,预变形降低了合金时效第1阶段硬化效果,提高了合金峰时效硬度,缩短了峰时效时间;随预变形量的增加,合金峰时效硬度增大,峰时效时间提前。增加预变形量使合金中析出的板条状S相更为细小、弥散。预变形引入位错对沉淀析出有利,位错环纯刃型位错为S相析出提供有利位置,促进球状S相形核。预变形产生位错结构有利于I型S相析出,并延缓II型S相析出  相似文献   

3.
预变形对2519铝合金组织与力学性能的影响   总被引:5,自引:0,他引:5  
通过拉伸测试、显微硬度测试、透射电镜及扫描电镜分析等手段研究了预变形对2519铝合金组织与力学性能的影响.结果表明:预变形降低了合金于180℃时效第一阶段的硬化效果,提高了合金峰值硬度及强度,缩短了峰值时效时间.预变形合金强度、硬度的提高是由于θ′相的数目增加和尺寸减小.细小弥散的θ′相有利于阻碍位错的运动,提高了合金的强度,同时也降低了合金的塑性.综合考虑合金的强度和塑性,2519铝合金时效前的预变形以15%为宜.  相似文献   

4.
借助金相显微镜、透射电镜、拉伸测试、抗弹性能测试等手段研究T9I6新型形变热处理对2519A铝合金组织、力学性能和抗弹性能的影响。经T9I6工艺处理的2519A铝合金,其屈服强度、抗拉强度、伸长率分别达到501 MPa、540 MPa、14%。30 mm厚的2519A-T9I6铝合金板材的极限穿透速度达715 m/s。弹坑侧壁组织随着弹孔深度的变化而变化。T9I6热处理工艺中的断续时效阶段是2519A铝合金性能提升的关键。低温下的时效使得GP区变得密集,从而使得后续相的析出也变得更为密集、细小。  相似文献   

5.
形变热处理工艺对2024铝合金组织及力学性能的影响   总被引:2,自引:0,他引:2  
采用力学性能测试、金相显微分析、x射线衍射物相分析、扫描电镜断口扫描等手段,研究了形变热处理工艺对2024铝合金组织及性能的影响。研究结果表明,预变形使合金的时效强化效果提前;随着变形量的增加,延伸率有所下降,合金强度先提高后降低,在变形量为40%时最大。析出相随变形量增大而更加弥散细化;但大变形时效态的合金析出强化相明显减少,表明大变形使合金析出相的析出机制发生了改变。  相似文献   

6.
采用维氏硬度测试、拉伸性能测试等方法研究了不同拉伸预变形量对2219铝合金在177℃时效时的力学性能影响,并利用光学显微镜、扫描电镜和透射电镜观察了其微观形貌和显微组织。结果表明:合金经过预拉伸变形后晶粒伸长,时效后晶粒中析出大量的正交片状析出相,合金强度明显提高;增大预变形量可以促进过渡相θ″向θ'的转变析出,15%预拉伸样品在6 h即达到峰值时效,屈服强度和伸长率由时效前的322.9 MPa、14.0%变为368.8 MPa和9.6%;在同一时效时间,合金的强度随着预拉伸量的增加而提高,伸长率降低。  相似文献   

7.
采用维氏硬度测试、拉伸性能测试等方法研究了不同拉伸预变形量对2219铝合金在177℃时效时的力学性能影响,并利用光学显微镜、扫描电镜和透射电镜观察了其微观形貌和显微组织。结果表明:合金经过预拉伸变形后晶粒伸长,时效后晶粒中析出大量的正交片状析出相,合金强度明显提高;增大预变形量可以促进过渡相θ″向θ'的转变析出,15%预拉伸样品在6 h即达到峰值时效,屈服强度和伸长率由时效前的322.9 MPa、14.0%变为368.8 MPa和9.6%;在同一时效时间,合金的强度随着预拉伸量的增加而提高,伸长率降低。  相似文献   

8.
采用扫描电镜、透射电镜、室温拉伸测试及疲劳性能测试等方法,研究T87和T9I6断续时效处理对51 mm厚2519A铝合金厚板厚向组织与性能的影响。结果表明:经T9I6断续时效处理后,2519A铝合金晶粒组织和析出相沿厚度方向分布不均匀。从表层到中间层,随着晶粒长径比的增加,粗大第二相和未固溶相体积分数也随之变大,时效析出相的体积分数随之降低;与T87态合金相比,2519A-T9I6合金晶内析出相的体积分数更大,且分布更均匀,其厚向屈服强度与抗拉强度较T87态分别提高50 MPa和90 MPa。同时,由于预时效处理后的中间层相对较软,故冷轧变形能够深入中间层,在加工硬化以及析出强化的共同作用下,T9I6合金厚向硬度整体提高,硬度不均匀性降低。在相同疲劳加载条件下,T9I6态厚向的疲劳寿命更高,疲劳极限较T87态提高了21 MPa。  相似文献   

9.
将固溶处理后的2219铝合金经8%预变形,再分别进行163、170、177和184℃下的时效处理。采用光学显微镜(OM)、扫描电镜(SEM)、透射电镜(TEM)和拉伸试验等分析手段,研究了形变热处理(TMT)后2219铝合金的显微组织和力学性能。结果表明:合金经预变形后晶粒沿着拉伸方向发生了明显的延伸。形变热处理使合金的强度大幅提高,伸长率有所下降。经177℃×6 h时效,合金达到最佳的综合力学性能,抗拉强度、屈服强度和伸长率分别为450 MPa、376 MPa和14.4%。时效前期大量θ″相和少量弥散分布的θ'相使合金的强度快速增加,随着基体内析出相不断向稳定的θ相转变,合金的强度逐渐下降。此外,预变形引入的大量位错以及晶界无沉淀析出带(PFZ)的宽度也会影响合金的力学性能。  相似文献   

10.
通过硬度测试、拉伸性能测试、透射电镜观察等分析手段研究了不同强变形工艺下2519A铝合金的力学性能与微观组织。结果表明,经50%的冷轧变形和165 ℃人工时效后,2519A合金的力学性能明显提高,其抗拉强度、屈服强度和伸长率分别为522 MPa、468 MPa和8.5%。而在冷变形前添加165 ℃×2 h预时效处理,合金的力学性能进一步提高,其抗拉强度、屈服强度和伸长率分别达到535 MPa、497 MPa和8%。预时效处理可以提高合金中θ′相的密度,使析出相分布更加均匀,有助于提高合金的力学性能。  相似文献   

11.
采用拉伸测试、硬度测试、TEM 观察等方法,研究了预形变对2519A铝合金时效析出相的影响.结果表明,与未经预变形状态的相比,经过50%预变形后,由于预变形增加了合金中的位错密度,使晶内析出相细小弥散分布,同时减少了晶界析出相的数量,减少了其占晶界和亚晶界的体积分数,从而改善了合金的性能.拉伸试验结果表明,50%预形变显著改善了合金的力学性能.  相似文献   

12.
借助金相显微镜、透射电镜、拉伸测试、抗弹性能测试等手段研究T916新型形变热处理对2519A铝合金组织、力学性能和抗弹性能的影响。经T916工艺处理的2519A铝合金,其屈服强度、抗拉强度、伸长率分别达到501MPa、540MPa、14%。30mm厚的2519A-T916铝合金板材的极限穿透速度达715m/s。弹坑侧壁组织随着弹孔深度的变化而变化。T916热处理工艺中的断续时效阶段是2519A铝合金性能提升的关键。低温下的时效使得GP区变得密集,从而使得后续相的析出也变得更为密集、细小。  相似文献   

13.
采用显微硬度测试、拉伸实验、EBSD和TEM等检测手段研究了不同变形量对形变和时效结合制备的Al-Mg-Si-Cu合金力学性能和显微结构的影响.结果表明,随着变形量的增加,轧制态合金的硬度会逐渐增加,后续时效过程中形变合金均能进一步强化但时效硬化能力逐渐下降;晶粒沿着轧制方向逐渐被拉长为层状结构,形成大量亚晶界.变形量小时,合金内位错密度随着形变量的增加而增加;变形量较大时,位错发生缠结并形成亚晶.形变导致的位错组态变化显著影响合金的析出特性,析出相逐渐从离散分布演变为连续分布,连续分布的析出相是溶质原子析出与缺陷退化交互作用的结果,通过调整形变量和时效工艺有助于制备强度和塑性结合良好的铝合金.  相似文献   

14.
采用硬度测试、拉伸实验、XRD分析和TEM观察等方法,研究了一种新型形变热处理(预时效+冷轧变形+再时效)对时效硬化型铝合金微观组织和力学性能的影响.结果表明,这种形变热处理不仅能够大幅度提高6061铝合金强度,还能使其保持良好塑性.经过优化处理(180℃,2 h欠时效+75%压下量冷轧变形+100℃,48 h再时效),6061铝合金的抗拉强度和屈服强度分别为560和542 MPa,延伸率为8.5%.微观组织观察表明,合金强度的提高来源于析出强化、位错强化、位错胞强化和高Taylor因子的综合作用;相对于冷轧状态,延伸率的改善则与再时效过程中强化相的再析出和位错的轻微回复有关.  相似文献   

15.
通过显微硬度测试、电导率测试、拉伸力学性能测试以及透射电镜观察等研究预时效温度对2519铝合金力学性能和电导率的影响.结果表明:随着预时效温度的升高,2519铝合金到达峰值时效的时间缩短,峰值硬度降低;经135 ℃预时效的合金具有较大的抗拉强度和屈服强度,其强度分别为490和442 MPa,但其伸长率仅为7.0%;经165 ℃预时效的合金具有较好的综合力学性能,其中抗拉强度、屈服强度和伸长率分别为480 MPa、435 MPa和10.5%;当预时效温度大于165 ℃时,合金电导率随预时效温度的升高而升高;当预时效温度小于 165 ℃时,合金电导率随温度的升高逐渐降低.  相似文献   

16.
含钪Al-Cu-Li合金的形变时效研究   总被引:3,自引:1,他引:3  
通过显微组织观察和室温拉伸试验,研究了形变时效对含钪Al-Cu-Li合金组织和拉伸性能的影响。结果表明,时效前的预变形能促进T1(Al2CuLi)相弥散细小的析出,显著提高合金的强度,使时效峰值提前。合金的强度随预变形量的增大而升高,但预变形量过大,不利于T1相的析出形态和分布,影响合金的性能。在本试验条件下,该合金的最佳预变形量为3.5%。  相似文献   

17.
通过硬度测试、室温拉伸测试、电子背散射衍射分析(EBSD)、透射电子显微分析(TEM)以及数字图像相关(DIC)等手段,研究不同拉伸预变形量对2195铝锂合金在155℃时效后拉伸力学性能的影响。结果表明:拉伸预变形量为2%、4%、6%、8%的合金经过155℃时效后,其抗拉强度分别为560.4 MPa、570.8 MPa、573.6 MPa、575.9 MPa。随着预变形量的增大,合金强度不断提高,这是由于位错是强化相T1相的有利形核点位,拉伸预变形量的增大使得位错密度增加,从而使得T1相数量密度增加。但随着拉伸预变形量的增大,拉伸预变形对合金的强度提升幅度逐渐减小,这主要是位错堆积缠结,析出相形核点重叠导致的。随着拉伸预变形量从2%增大到8%,合金的伸长率从9.6%下降到6.4%。通过DIC观察,拉伸预变形量的增大会使得拉伸过程中的应变集中现象提前出现,颈缩稳定性有所降低。这是由于较大的拉伸预变形量会使得合金在预变形阶段的应变分布不均匀,合金内出现破碎的变形组织晶粒。这些变形组织晶粒与周围其他晶粒组织的晶粒取向不同,更有利于微裂纹的萌生和扩展。4%的拉伸预变形量可以使2195铝锂合金达...  相似文献   

18.
通过力学性能、电导率、慢应变速率拉伸试验、透射电镜及扫描电镜分析,研究了新型热机械处理对7075铝合金力学性能、抗应力腐蚀性能及显微组织的影响。结果表明:T6态合金晶内析出相细小但有粗大相存在,晶界析出相连续,具有较高的强度但塑性欠佳,抗应力腐蚀性最差;回归再时效(RRA)状态下,晶内析出相相对细小弥散,晶界析出相尺寸、间距大,具有较高的强度和抗应力腐蚀性能,塑性相对T6态有所改善;回归冷轧再时效(RRCA)态合金形变处理后产生大量位错,位错析出相及位错强化相互作用,使合金强度增大但塑性降低,晶界析出相仍为断续态,抗应力腐蚀性较好;回归热轧再时效(RRWA)工艺具有良好的综合力学性能,且抗应力腐蚀性能良好,I_(SSRT)=0.22。  相似文献   

19.
通过显微硬度测试、力学性能测试和透射电镜观察等手段,研究了不同预变形程度对2099合金显微组织和力学性能的影响。结果表明,随着预变形程度增大,合金时效进程显著加快,合金峰时效态的强度显著提高;析出相更为细小弥散地分布于基体中,较为粗大的晶界析出相趋于不连续化、点链化;时效强化相经历了由T_1相、δ′相和θ′相三相共存到以T_1相为主要强化相的变化过程,表明预变形对时效过程中析出相的大小、类型、分布有重要影响,在促进T_1相析出的同时,也消耗了δ′相和θ′相。  相似文献   

20.
新型T-Mg_(32)(Al,Zn,Cu)_(49)相强化的Al-Mg-Zn-Cu合金表现出优异的力学性能,本文以Al-4.39Mg-2.78Zn-0.42Cu合金为研究对象,对合金时效过程中的显微组织和力学性能进行研究,并揭示Al-Mg-Zn-Cu合金的强化机制。结果表明:随着第二阶段140℃时效时间的增加,合金的显微组织由尺寸细小的Guinier-Preston(GP)区逐渐析出T相,析出相的尺寸不断增大,数量密度逐渐降低。拉伸测试结果表明:时效过程中合金的强度先升高后降低;在峰时效(90℃,48 h)+(140℃,16 h)状态下,合金的屈服强度为338 MPa。强化机制分析表明:T相析出强化以及Mg溶质原子的固溶强化和细晶强化分别对合金屈服强度贡献了284.8 MPa、55.6 MPa、12.2 MPa,说明了Al-Mg-Zn-Cu合金的主要强化机制为析出强化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号