首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
为了建立基于FTIR光谱地沟油掺伪定性分析方法及简化红外光谱扫描样品制备。油样溶于有机溶剂,将混合油均匀涂覆于透明聚乙烯(PE)薄膜上,挥干有机溶剂形成油膜,扫描其红外光谱。从制备和收集的73个样品中,随机分40个样品作为校正集样品,33个为验证集样品,建立地沟油鉴别定性模型,并对模型进行验证。结果表明:当掺伪质量分数为1%时,在红外光谱范围为1 500~650 cm-1,采用原始光谱结合判别分析建立定性分析模型,其识别率可达100%。表明基于涂膜法FTIR光谱的地沟油掺伪定性分析是可行的。  相似文献   

2.
近红外光谱定性定量检测牛肉汉堡饼中猪肉掺假   总被引:1,自引:0,他引:1  
利用近红外光谱技术结合化学计量学方法,对不同肥肉占比的解冻牛肉汉堡饼中的猪肉掺假进行定性判别建模,并建立猪肉掺假比例的定量检测模型。结果表明:对不同掺假比例样品的判别,应用偏最小二乘判别分析方法效果优于主成分分析-支持向量机方法,最优模型校正集和验证集判别正确率均为100%。应用偏最小二乘方回归法定量检测不同肥瘦比解冻牛肉汉堡饼中的猪肉掺假比例,模型校正集和验证集的相关系数Rc和Rp、验证集均方根误差分别为0.968 9、0.861 1、7.221%。因此,应用近红外光谱技术可以实现对不同肥肉占比的解冻牛肉汉堡饼中的猪肉掺假进行定性判别和定量检测。  相似文献   

3.
《食品与发酵工业》2019,(18):222-227
建立快速定性鉴别山茶油与大豆油、菜籽油和玉米油,以及定量检测山茶油中掺杂大豆油的傅里叶变换红外光谱(Fourier transform infrared spectroscopy,FTIR)检测方法。采用FTIR光谱技术,对比山茶油与大豆油、玉米油、菜籽油红外光谱中2个特征峰(1 122 cm~(-1)与1 096 cm~(-1))的峰高差异,可快速定性区分山茶油与其他3种食用油,并能鉴别掺入大豆油含量(质量分数)在30%及以上的山茶油;利用4种食用油的1 464~722 cm~(-1)范围内的指纹光谱,结合PCA算法,建立的定性判别模型可区分山茶油及其他3种食用油,并结合PLSR算法,构建了检测山茶油中掺入大豆油的定量模型,其中校正集的RMSECV值为0.032 0,验证集的RMSEP值为0.029 7,校正集和验证集的R~2值均能达到0.99,最低检测限达1%(质量分数)。结果表明,所建立的山茶油中掺杂大豆油的FTIR光谱检测方法简便、灵敏、准确,为市场筛查掺假山茶油的快速鉴别提供了技术参考。  相似文献   

4.
建立基于同步荧光光谱的杜仲籽油掺假判别分析模型及检测方法。以杜仲籽油和7种常见植物油为研究对象,采集激发波长范围为250~700 nm,波长间隔为60 nm的同步荧光光谱,分析杜仲籽油和常见食用油的荧光光谱特性,利用光谱峰面积建立掺假判别模型并对其进行验证。结果表明:杜仲籽油与其他7种植物油的荧光特性存在显著差异;分别利用600~700 nm和300~500nm波长范围同步荧光光谱进行主成分分析,其对杜仲籽油掺假识别准确率高达100%;利用峰面积与掺假比例建立定量判别分析模型,检测限分别为1%和0. 48%。该方法可实现对杜仲籽油掺假的定性和定量分析,且具有较高的灵敏度、简便和快速等特点。  相似文献   

5.
基于近红外透射光谱的食用油氧化定性分析   总被引:2,自引:0,他引:2  
为建立食用油氧化的快速鉴别方法,以食用油为材料,根据国家标准对酸价和过氧化值的限量规定将不同氧化程度的样品分为未氧化油和已氧化油两类,通过近红外光谱透射技术结合距离判别分析,建立未氧化油和已氧化油的定性判别模型。结果表明:在波数范围为5450~4650cm-1,采用多元散射校正、一阶求导和Norris导数平滑光谱处理,校正集模型识别率为99%,验证集模型识别率为97.8%,模型预测效果良好,利用近红外透射光谱食用油氧化定性分析可行。  相似文献   

6.
目的研究基于中红外光谱(mid infrared spectroscopy,MIRS)技术定性判别有机微量元素添加剂掺假的可行性。方法以甘氨酸铁螯合物和硫酸亚铁为研究对象,分析样品的中红外光谱,解析不同样品光谱的特异性;建立偏最小二乘判别(partial least squares discriminant analysis,PLS-DA)校正模型对掺假样品进行判别,并比较不同预处理方法、全光谱与特征波段对校正模型判别效果的影响。结果甘氨酸铁螯合物与硫酸亚铁光谱差异显著,主要分布在(3500~3000) cm~(-1)、(1600~1300) cm~(-1)、(1300~1000) cm~(-1)、(660~550) cm~(-1),通过采用平滑(smoothing,SM)、归一化(normalization,Norm)与一阶导数(first derivative,FD)相结合的方法对光谱进行预处理,结合1300 cm~(-1)~1000 cm~(-1)波段建立的PLS-DA校正模型判别效果最优,校正集的判别正确率为97.5%,验证集的判别正确率为100.0%,对外部样品的判别正确率达到92.7%。结论中红外光谱技术结合化学计量学方法能够对甘氨酸铁螯合物的掺假进行准确判别。  相似文献   

7.
为快速、准确利用近红外定性分析混入鸭肉的掺假猪肉糜。试验在猪肉糜中添加不同比例的鸭肉肉糜,制备不同掺假鸭肉的样品90个,其中76个为掺有不同鸭肉质量分数的样品,14个为纯猪里脊肉,并独立制备44个验证集样品,其中37个为掺有不同鸭肉肉糜质量分数的样品,7个为纯猪肉。在10 000 cm-1~4 000 cm-1波数范围内进行光谱扫描,采用不同光谱预处理方法结合主成分分析,建立PLS-DA模型。建立的判别分析模型:在全波段范围(10 000 cm-1~4 000 cm-1)内,对校正集正确判别率可达100%,验证集的正确判别率可达88.6%。研究结果表明近红外漫反射光谱可以快速检测猪肉中的掺杂鸭肉。  相似文献   

8.
茶籽油是我国特有的高级食用油。近年来茶籽油掺伪现象层出不穷,本研究利用傅里叶近红外(FT-NIR)光谱与化学计量学相结合,获得一种快速对不同掺假类型(低芥酸菜籽油、大豆油、二元混合油)和不同掺假度(0%-100%)的茶籽油进行定性和定量检测的方法。基于近红外差异光谱进行判别分析(discriminant analysis,DA),DA成功识别了不同掺假度的二元与三元混合茶籽油。通过对手动与自动筛选的不同波段结合不同预处理方法建立偏最小二乘法(Partial least squares,PLS)定量分析模型,最佳模型对掺假水平具有良好的预测性能,决定系数(R2)均大于0.91。校正均方根误差(RMSEC)和预测均方根误差(RMSEP)均接近于0。通过交叉验证,最佳模型的交叉验证相关系数均大于0.98,交叉验证均方根误差均小于0.05,表明筛选的最佳模型均具有良好的稳定性。通过外部验证,最佳模型对不同掺假类型的中、高掺假度(≥10%)的样品识别率高达100%。研究表明,利用近红外光谱技术结合化学计量学能够实现茶籽油掺假的快速、无损鉴定。  相似文献   

9.
利用衰减全反射傅里叶变换红外光谱(ATR-FTIR)技术采集猪、牛、羊革样品的红外光谱信息,分析皮革红外光谱特征。通过化学计量学对光谱数据进行处理,选择合适的光谱区域和预处理方法,建立定性鉴别皮革种类的判别分析模型(Ⅰ和Ⅱ)及方法。根据计算得到的马氏距离,由模型I对样品"牛/羊"和"猪"革种类进行判别,然后由模型Ⅱ进一步对"牛"和"羊"革种类进行判别。通过验证集样品对模型性能进行评价,结果表明模型Ⅰ对猪革判别正确率为100%;由于牛、羊革的光谱信息极为相似,模型Ⅱ判别正确率有所降低。  相似文献   

10.
目的建立简便、快速的餐饮废油、生物柴油以及合格食用油的鉴别检测方法。方法选择市售普通食用油、餐馆用油、生物柴油和餐饮废油(包括潲水油和煎炸老油)为研究对象,以1745 cm-1波数处的共有吸收峰为基准,比较各油脂红外光谱特征吸收峰相对强度;在230~800 nm范围内,比较各油脂的紫外可见吸收曲线,对油脂品质进行比较鉴别。结果比较红外图谱发现,各油脂在3473、3008、1652 cm-1附近对1745 cm-1的吸收峰相对强度差别较大,可以此作为判别依据;通过观察比较各油脂在紫外可见光谱图中的起始和终止吸收波长,以及在668 nm处是否有较高的吸光度或特征吸收峰,可对油脂品质进行鉴别。结论综合红外和紫外可见两种光谱方法的检测结果,本方法可初步地快速鉴别合格食用油与餐饮废油。  相似文献   

11.
为了建立一种简便有效的花生油掺伪的定性和定量鉴别方法,采集花生油中分别掺伪0~90%大豆油、棕榈油和棉籽油样品的可见—近红外光谱图,结合主成分分析、判别分析、改进偏最小二乘法,建立花生油掺伪的定性鉴别和定量预测模型。结果表明,在定性鉴别中,对花生油中分别掺入大豆油、棕榈油和棉籽油的整体正确判别率分别达到了100%、96.1%和85.3%。在定量分析中,对MPLS法建立的花生油二元掺伪定标模型进行验证,结果表明,掺入大豆油、棉籽油和棕榈油的预测相关系数R_p~2分别为0.998、0.997和0.995,相对标准差RSD分别为2.33%、3.04%和3.83%,相对分析误差RPD分别为3.542、2.642和2.581,说明这三种掺假花生油所建立的最优定标模型的预测精度高,其中花生油中掺入大豆油的预测精度最高,检测花生油中掺入棉籽油与棕榈油的最低掺假量为3%。为花生油二元掺伪模式提供了一种简便、快速、有效的分析方法。  相似文献   

12.
采用偏最小二乘法(PLS)建立了油茶籽油中掺杂菜籽油和大豆油的近红外光谱定量检测模型。配制不同比例(0~100%)的油茶籽油和菜籽油、油茶籽油和大豆油混合样品共256个,采集样品在10000~4000cm-1范围内的近红外透反射光谱,模型采用交互验证和外部检验来考察所建立模型的可靠性,不需进行任何光谱预处理,所建立的PLS模型相关系数为0.9997,训练集的交叉验证均方根误差(RMSECV)为0.504,预测集的预测均方根误差(RMSEP)为0.66。应用建立的模型对未知样品进行预测,并对预测值和真实值进行比较,在掺杂油含量为2.5%~100%之间范围内准确可靠,研究结果表明,采用近红外光谱技术可以实现纯茶油中菜籽油和大豆油掺杂量检测。  相似文献   

13.
利用激光近红外技术结合支持向量机(support vectormachines,SVM)对花生油掺伪进行定性和定量分析。使用激光近红外光谱仪采集188个掺入餐饮废弃油、大豆油、玉米油以及菜籽油的花生油样品光谱图。结果表明,建立的SVC分类模型均能实现100%的预测准确率,但经提取波长后的模型的变量变少,由全波段的451个波长数减少为136个。建立的SVR回归模型也能准确预测花生油中掺伪油的含量,其中非全波段模型参与建模变量变少,由451个降低到66个,预测精度也更高,校正集和测试集相关系数分别达到99.88%、99.90%,均方根误差都低于6.99E-4。由此可知,特征波长提取方法不仅可以减少建模变量,提高建模效率,也能够提高模型的预测能力。结果表明,运用激光近红外结合SVM可以实现花生油掺伪油脂的定性和定量分析。  相似文献   

14.
目的应用傅里叶变换红外光谱(FTIR)结合最小偏二乘法(PLS)建立大豆原油-棕榈油二元掺伪体系的定量分析模型。方法以42个大豆原油、21个精炼油、88个掺伪油的FIIR谱图为模型样本,预处理方法选用标准正态变量(SNV),在此基础上应用主成分分析(PCA)提取特征变量,随机选取60个掺伪油样组成校正集,28个掺伪油样组成验证集,以PLS方法建立大豆原油的掺伪定量模型。结果 PCA可将大豆原油及精炼油分成独立的2类。经PCA分析,大豆原油中掺入棕榈油的掺伪检测限为5%。PLS校正模型的判定系数R2为0.9926,校正误差均方根RMSEC为1.8121。预测模型的R2为0.9823,交叉验证误差均方根RMSECV为2.8189。同时得到的预测结果的偏差在1.3909%~3.1019%之间,差异不显著,说明此模型可行。结论 FTIR-PLS模型能够实现大豆原油的掺伪定量分析,分析速度快,能够满足大豆原油入库要求,是一种可行的大豆原油掺伪分析方法。  相似文献   

15.
There is a growing concern over the food safety issue related to increased incidence of cooking oil adulteration with recycled cooking oil (RCO). The objective of this study was to detect fresh palm olein (FPO) adulteration with RCO using fatty acid composition (FAC) and Fourier-transform infrared spectroscopy (FTIR) spectral analyses combined with chemometrics. RCO prepared in the laboratory was mixed with FPO in the proportion ranged from 1% to 50% (v/v) to obtain the adulterated oil samples (AO). FACs for FPO, RCO, and AO were determined using gas chromatography equipped with a flame ionization detector (GC-FID). The compositions of most fatty acids in RCO lied within the normal ranges of Codex standard, except for C8:0, C10:0, C11:0, C15:0, trans C18:1, and polyunsaturated fatty acids (PUFAs), C20:5. PUFAs showed a consistent decreasing trend with increasing magnitude of change with respect to increasing adulteration level and thus might be a good indicator for detecting FPO adulteration with RCO. The evaluation parameters (coefficient of determination, root mean standard error) of the FTIR-partial least square (PLS) model of palm oil adulteration with recycled oil are R2 = 0.995 and 3.25, respectively. For FTIR spectral analysis, the distinct variations in spectral regions and aberrations in characteristic bands between FPO and RCO were observed. The optimized PLS calibration model developed from normal spectral of the combined region at 3602–3398, 3016–2642, and 1845–650 cm?1 overpredict the adulteration level. On the other hand, the discriminant analysis classification model was able to classify the FPO and AO into two distinct groups. Improvement of the principles of combined techniques in authenticating AO from fresh oil is beneficial as a guideline to detect adulteration in cooking oil.  相似文献   

16.
应用近红外光谱(NIR)分析技术建立测定芝麻油中大豆油含量的定量分析模型。基于32个含量梯度共384个掺伪芝麻油样品的近红外光谱,首先采用标准正态变量变换(SNV)对光谱进行预处理,再采用无信息变量消除法(UVE)初步筛选波长变量,然后结合联合间隔偏最小二乘法(SiPLS)和带极值扰动的简化粒子群优化算法(tsPSO)建立芝麻油中大豆油掺伪含量预测模型,经特征波段选取后建立的模型变量减少,波长变量由451个减少到219个,训练集和测试集相关系数分别为0. 999 8和0. 991 9,均方根误差分别为4. 39E-2和3. 99E-2。结果表明,该方法能够作为芝麻油中大豆油掺伪含量的快速检测方法。此外,该方法也可应用到芝麻油中掺入其他低价值油的掺伪含量检测中。  相似文献   

17.
Avocado oil is a high-value and nutraceutical oil whose authentication is very important since the addition of low-cost oils could lower its beneficial properties. Mid-FTIR spectroscopy combined with chemometrics was used to detect and quantify adulteration of avocado oil with sunflower and soybean oils in a ternary mixture. Thirty-seven laboratory-prepared adulterated samples and 20 pure avocado oil samples were evaluated. The adulterated oil amount ranged from 2% to 50% (w/w) in avocado oil. A soft independent modelling class analogy (SIMCA) model was developed to discriminate between pure and adulterated samples. The model showed recognition and rejection rate of 100% and proper classification in external validation. A partial least square (PLS) algorithm was used to estimate the percentage of adulteration. The PLS model showed values of R2 > 0.9961, standard errors of calibration (SEC) in the range of 0.3963–0.7881, standard errors of prediction (SEP estimated) between 0.6483 and 0.9707, and good prediction performances in external validation. The results showed that mid-FTIR spectroscopy could be an accurate and reliable technique for qualitative and quantitative analysis of avocado oil in ternary mixtures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号